Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
AIDS Res Hum Retroviruses ; 37(6): 453-460, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749321

RESUMEN

OB-002 is an extremely potent CCR5 antagonist that has previously been shown to completely block transmission in a nonhuman primate model of HIV infection. The purpose of this study was to characterize the safety, acceptability, and pharmacokinetic profile of a gel formulation of OB-002 (OB-002H). The trial had two phases, an open label single dose exposure (vaginal and rectal) and a randomized placebo controlled multiple dose phase during which study participants received five vaginal daily doses of OB-002H gel or matched placebo in a 2:1 ratio. Serum OB-002 levels were quantified at multiple time points up to 24 h after the first dose. A total of thirty female and male participants were enrolled in the study (12 in the single dose phase and 18 in the multiple dose phase). All adverse events were Grade 1 or 2, and the majority was unrelated to study product. Only two product-related transient Grade 2 events (both vulval dryness) occurred in the study, both in the OB-002H gel randomized multiple dose arm. All colposcopic and anoscopic assessments following product exposure were normal. There was no evidence of systemic absorption of OB-002. Overall, the product had a positive acceptability profile, and most study participants would consider using the product for protection against HIV or pregnancy. Future studies are needed to assess the extended safety and acceptability of OB-002H gel in sexually active participants. Clinical Trial Registration Number: NCT04791007.


Asunto(s)
Infecciones por VIH , Animales , Método Doble Ciego , Femenino , Infecciones por VIH/tratamiento farmacológico , Voluntarios Sanos , Humanos , Masculino , Embarazo , Recto , Vagina
2.
Front Aging Neurosci ; 11: 253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572169

RESUMEN

An important aspect concerning the underlying nature of memory function is an understanding of how memories are acquired and lost. The stability, and ultimate demise, of memory over the lifespan of an organism remains a critical topic in determining the neurobiological mechanisms that mediate memory representations. This has important implications for the elucidation and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). One important question in the context of preserving functional plasticity over the lifespan is the determination of the neurobiological structural and functional changes that contribute to the formation of memory during the juvenile time frame that might provide protection against later memory dysfunction by promoting the establishment of redundant neural pathways. The main question being, if memory formation during the juvenile period does strengthen and preserve memory stability over the lifespan, what are the neurobiological structural or functional substrates that mediate this effect? One neural attribute whose function may be altered with early life experience and provide a mechanism to preserve memory through the lifespan is glucose transport-linked calcium (Ca2+) buffering. Because peak increases in glucose utilization overlap with a timeframe during which spatial training can enhance later memory processing, it might be the case that learning-associated changes in glucose utilization would provide an important neural functional change to preserve memory function throughout the lifespan. The glucose transporters are proteins that are reduced in AD pathology and there is evidence that glucose reductions can impair Ca2+ buffering. In the absence of an appropriate supply of ATP, provided via glucose transport and glycolysis, Ca2+ levels can rise leading to neural vulnerability with ensuing pathological outcomes. In this review, we explore the hypothesis that enhancing glucose utilization with spatial training during the preadolescent period will provide a functional enhancement that regulates glucose-dependent Ca2+ signaling during aging or neurodegeneration and provide essential neural resources to preserve functional plasticity and memory function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA