Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Cardiovasc Pharmacol ; 83(1): 126-130, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38180458

ABSTRACT: Central sleep apnea (CSA) is common in patients with heart failure. Recent studies link ticagrelor use with CSA. We aimed to evaluate CSA prevalence in patients with coronary heart disease (CHD) and whether ticagrelor use is associated with CSA. We reviewed consecutive patients with CHD who underwent a polysomnography (PSG) test over a 5-year period from 3 sleep centers. We sampled patients who were on ticagrelor or clopidogrel during a PSG test at a 1:4 ticagrelor:clopidogrel ratio. Patients with an active opioid prescription during PSG test were excluded. Age, left ventricle (LV) dysfunction, and P2Y12 inhibitor use were included in a multivariate logistic regression. A total of 135 patients were included with 26 on ticagrelor and 109 on clopidogrel (age 64.1 ± 11.4, 32% male). High CSA burden (12%) and strict CSA (4.4%) were more common in patients on ticagrelor than in those on clopidogrel (27% vs. 8.3% and 10.0% vs. 1.8%). Ticagrelor use (vs. clopidogrel) was associated with high CSA burden (OR 3.53, 95% CI 1.04-12.9, P = 0.039) and trended toward significance for strict CSA (OR 6.32, 95% CI 1.03-51.4, P = 0.052) when adjusting for age and LV dysfunction. In an additional analysis also adjusting for history of atrial fibrillation, ticagrelor use and strict CSA became significantly associated (OR 10.0, 95% CI 1.32-117, P = 0.035). CSA was uncommon in patients with CHD undergoing sleep studies. Ticagrelor use (vs. clopidogrel) was associated with high CSA burden and trended toward significance for strict CSA.


Coronary Disease , Sleep Apnea, Central , Humans , Male , Middle Aged , Aged , Female , Sleep Apnea, Central/chemically induced , Sleep Apnea, Central/diagnosis , Sleep Apnea, Central/epidemiology , Clopidogrel , Ticagrelor/adverse effects , Analgesics, Opioid , Coronary Disease/diagnosis , Coronary Disease/drug therapy , Coronary Disease/epidemiology
2.
J Neurochem ; 132(1): 70-84, 2015 Jan.
Article En | MEDLINE | ID: mdl-25314656

Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2 O2 in this process. Accordingly, exogenous sublethal concentrations of H2 O2 , added as a bolus dose (5 µM) or more effectively through a steady-state generation (1-2 µM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2 O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2 O2 , inhibit the antineuritogenic action of Nogo-A. Currently, several agents are being evaluated for overcoming axonal growth inhibitors to promote functional recovery after stroke and spinal cord injury. Epigallocatechin-3-gallate (EGCG), present in green tea polyphenol mixture (GTPP), prevents antineuritogenic activity of Nogo-A, a myelin-derived axonal growth inhibitor. The preventive action of EGCG involves the cell-surface-associated 67-kDa laminin receptor and H2 O2 . GTPP may complement ongoing efforts to treat neuronal injuries.>


Hydrogen Peroxide/pharmacology , Myelin Proteins/antagonists & inhibitors , Myelin Proteins/pharmacology , Neurites/drug effects , Oxidants/pharmacology , Polyphenols/pharmacology , Receptors, Laminin/drug effects , Tea/chemistry , Animals , Cells, Cultured , Growth Cones/drug effects , Mice , Nogo Proteins , Polyphenols/chemistry , Pseudopodia/drug effects
...