Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Res Sq ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38659936

Iron catalyses the oxidation of lipids in biological membranes and promotes a form of cell death referred to as ferroptosis1-3. Identifying where this chemistry takes place in the cell can inform the design of drugs capable of inducing or inhibiting ferroptosis in various disease-relevant settings. Whereas genetic approaches have revealed underlying mechanisms of lipid peroxide detoxification1,4,5, small molecules can provide unparalleled spatiotemporal control of the chemistry at work6. Here, we show that the ferroptosis inhibitor liproxstatin-1 (Lip-1) exerts a protective activity by inactivating iron in lysosomes. Based on this, we designed the bifunctional compound fentomycin that targets phospholipids at the plasma membrane and activates iron in lysosomes upon endocytosis, promoting oxidative degradation of phospholipids and ferroptosis. Fentomycin effectively kills primary sarcoma and pancreatic ductal adenocarcinoma cells. It acts as a lipolysis-targeting chimera (LIPTAC), preferentially targeting iron-rich CD44high cell-subpopulations7,8 associated with the metastatic disease and drug resistance9,10. Furthermore, we demonstrate that fentomycin also depletes CD44high cells in vivo and reduces intranodal tumour growth in an immunocompetent murine model of breast cancer metastasis. These data demonstrate that lysosomal iron triggers ferroptosis and that lysosomal iron redox chemistry can be exploited for therapeutic benefits.

2.
Nat Biomed Eng ; 8(1): 11-29, 2024 Jan.
Article En | MEDLINE | ID: mdl-36658343

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 µl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as well as thousands of molecular relationships associated with intra-day physiological variations (in heart rate, for example) and with the levels of clinical biomarkers (specifically, glucose and cortisol) and of physical activity. Combining wearables and multi-omics microsampling for frequent and scalable omics may facilitate dynamic health profiling and biomarker discovery.


Multiomics , Biomarkers
3.
bioRxiv ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37781599

Surgical removal of lymph nodes (LNs) to prevent metastatic recurrence, including sentinel lymph node biopsy (SLNB) and completion lymph node dissection (CLND), are performed in routine practice. However, it remains controversial whether removing LNs which are critical for adaptive immune responses impairs immune checkpoint blockade (ICB) efficacy. Here, our retrospective analysis demonstrated that stage III melanoma patients retain robust response to anti-PD1 inhibition after CLND. Using orthotopic murine mammary carcinoma and melanoma models, we show that responses to ICB persist in mice after TDLN resection. Mechanistically, after TDLN resection, antigen can be re-directed to distant LNs, which extends the responsiveness to ICB. Strikingly, by evaluating head and neck cancer patients treated by neoadjuvant durvalumab and irradiation, we show that distant LNs (metastases-free) remain reactive in ICB responders after tumor and disease-related LN resection, hence, persistent anti-cancer immune reactions in distant LNs. Additionally, after TDLN dissection in murine models, ICB delivered to distant LNs generated greater survival benefit, compared to systemic administration. In complete responders, anti-tumor immune memory induced by ICB was systemic rather than confined within lymphoid organs. Based on these findings, we constructed a computational model to predict free antigen trafficking in patients that will undergo LN dissection.

4.
Nat Cell Biol ; 25(12): 1746-1757, 2023 Dec.
Article En | MEDLINE | ID: mdl-38012403

The bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR+) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation. LepR+ cells, and the adipocytes they gave rise to, increased NGF production after myeloablation, promoting nerve sprouting in the bone marrow and haematopoietic and vascular regeneration. Nerves promoted regeneration by activating ß2 and ß3 adrenergic receptor signalling in LepR+ cells, and potentially in adipocytes, increasing their production of multiple haematopoietic and vascular regeneration growth factors. Peripheral nerves and LepR+ cells thus promote bone marrow regeneration through a reciprocal relationship in which LepR+ cells sustain nerves by synthesizing NGF and nerves increase regeneration by promoting the production of growth factors by LepR+ cells.


Bone Marrow , Receptors, Leptin , Bone Marrow/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Bone Marrow Cells/metabolism , Nerve Growth Factor/metabolism , Hematopoietic Stem Cells/metabolism , Nerve Regeneration
5.
bioRxiv ; 2023 Nov 19.
Article En | MEDLINE | ID: mdl-38014141

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.

6.
Nat Metab ; 5(9): 1578-1594, 2023 09.
Article En | MEDLINE | ID: mdl-37697054

Lipids can be of endogenous or exogenous origin and affect diverse biological functions, including cell membrane maintenance, energy management and cellular signalling. Here, we report >800 lipid species, many of which are associated with health-to-disease transitions in diabetes, ageing and inflammation, as well as cytokine-lipidome networks. We performed comprehensive longitudinal lipidomic profiling and analysed >1,500 plasma samples from 112 participants followed for up to 9 years (average 3.2 years) to define the distinct physiological roles of complex lipid subclasses, including large and small triacylglycerols, ester- and ether-linked phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, cholesterol esters and ceramides. Our findings reveal dynamic changes in the plasma lipidome during respiratory viral infection, insulin resistance and ageing, suggesting that lipids may have roles in immune homoeostasis and inflammation regulation. Individuals with insulin resistance exhibit disturbed immune homoeostasis, altered associations between lipids and clinical markers, and accelerated changes in specific lipid subclasses during ageing. Our dataset based on longitudinal deep lipidome profiling offers insights into personalized ageing, metabolic health and inflammation, potentially guiding future monitoring and intervention strategies.


Insulin Resistance , Humans , Lipidomics , Aging , Ceramides , Inflammation
7.
Ann Surg Oncol ; 30(13): 8302-8307, 2023 Dec.
Article En | MEDLINE | ID: mdl-37606840

INTRODUCTION: Neoadjuvant chemotherapy (NAC) for breast cancer has the advantage of determining in vivo response to treatment, enabling more conservative surgery, and facilitating the understanding of tumor biology. Pathologic complete response (pCR) after NAC is a predictor of improved overall survival. However, some patients demonstrate a discordant response to NAC between the breast and axillary nodes. This study was designed to identify factors that correlate to achieving a breast pCR without an axillary node pCR following NAC and explore the potential clinical implications. METHODS: The National Cancer Database was used to identify patients diagnosed with clinical T1-4, N1-3 breast cancer between 2004 and 2017. Patients underwent NAC followed surgical resection of the breast cancer and axillary node surgery. Multivariable analyses were used to identify clinical and pathologic factors associated with discordant pathologic response. RESULTS: In total, 13,934 patients met the inclusion criteria. Of these, 4292 (30.8%) patients demonstrated a breast pCR without a corresponding axillary pCR on final pathology. After adjusting for covariates, factors associated with higher discordance between axillary response in our cohort of breast pCR patients included older age (≥ 54), treatment at a community facility, T1 tumors, HR-positive, HER2 negative, low-grade tumors, and cN2/3 disease. CONCLUSIONS: Discordance between breast and axillary pCR is not infrequent and may be related to a number of patient-related factors and tumor characteristics impacting nodal response to NAC. Further investigation into differing responses to NAC is warranted to better understand the mechanism of this phenomenon and to determine how these findings may influence treatment.


Breast Neoplasms , Neoadjuvant Therapy , Humans , Female , Breast Neoplasms/surgery , Lymph Nodes/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant , Axilla/pathology
9.
Pigment Cell Melanoma Res ; 36(2): 206-223, 2023 03.
Article En | MEDLINE | ID: mdl-36478190

Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.


Melanoma , Humans , Melanoma/pathology , Tumor Microenvironment , Neoplasm Metastasis
10.
Sci Adv ; 8(35): eabn9550, 2022 09 02.
Article En | MEDLINE | ID: mdl-36044570

In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.


Electron Transport Complex I , Glucose , Glutamine , Neoplasms , Animals , Electron Transport , Electron Transport Complex I/metabolism , Glucose/metabolism , Glutamine/metabolism , Humans , Isotopes , Mice , NAD/metabolism , Neoplasms/metabolism , Saccharomyces cerevisiae Proteins/metabolism
11.
Trends Cancer ; 8(12): 988-1001, 2022 12.
Article En | MEDLINE | ID: mdl-35909026

Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.


Metabolomics , Neoplasms , Humans , Metabolomics/methods , Tumor Microenvironment , Neoplasms/pathology
12.
Cancer Discov ; 11(11): 2682-2692, 2021 11.
Article En | MEDLINE | ID: mdl-34649956

Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells. SIGNIFICANCE: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.


Neoplasms , Antioxidants/metabolism , Antioxidants/therapeutic use , Humans , Neoplasms/drug therapy , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
13.
Nature ; 591(7850): 438-444, 2021 03.
Article En | MEDLINE | ID: mdl-33627868

Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors1-6. LEPR+ cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors7-12, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin13,14, distinguishes peri-arteriolar LEPR+ cells poised to undergo osteogenesis from peri-sinusoidal LEPR+ cells poised to undergo adipogenesis (but retaining osteogenic potential). Peri-arteriolar LEPR+osteolectin+ cells are rapidly dividing, short-lived osteogenic progenitors that increase in number after fracture and are depleted during ageing. Deletion of Scf from adult osteolectin+ cells did not affect the maintenance of haematopoietic stem cells or most restricted progenitors but depleted common lymphoid progenitors, impairing lymphopoiesis, bacterial clearance, and survival after acute bacterial infection. Peri-arteriolar osteolectin+ cell maintenance required mechanical stimulation. Voluntary running increased, whereas hindlimb unloading decreased, the frequencies of peri-arteriolar osteolectin+ cells and common lymphoid progenitors. Deletion of the mechanosensitive ion channel PIEZO1 from osteolectin+ cells depleted osteolectin+ cells and common lymphoid progenitors. These results show that a peri-arteriolar niche for osteogenesis and lymphopoiesis in bone marrow is maintained by mechanical stimulation and depleted during ageing.


Arterioles , Lymphopoiesis , Osteogenesis , Stem Cell Niche , Adipose Tissue/cytology , Aging , Animals , Bone Marrow Cells/cytology , Bone and Bones/cytology , Female , Hematopoietic Cell Growth Factors/metabolism , Lectins, C-Type/metabolism , Lymphocytes/cytology , Male , Mice , Receptors, Leptin/metabolism , Stem Cell Factor , Stromal Cells/cytology
14.
Elife ; 102021 01 20.
Article En | MEDLINE | ID: mdl-33470192

Little is known about the metabolic regulation of rare cell populations because most metabolites are hard to detect in small numbers of cells. We previously described a method for metabolomic profiling of flow cytometrically isolated hematopoietic stem cells (HSCs) that detects 60 metabolites in 10,000 cells (Agathocleous et al., 2017). Here we describe a new method involving hydrophilic liquid interaction chromatography and high-sensitivity orbitrap mass spectrometry that detected 160 metabolites in 10,000 HSCs, including many more glycolytic and lipid intermediates. We improved chromatographic separation, increased mass resolution, minimized ion suppression, and eliminated sample drying. Most metabolite levels did not significantly change during cell isolation. Mouse HSCs exhibited increased glycerophospholipids relative to bone marrow cells and methotrexate treatment altered purine biosynthesis. Circulating human melanoma cells were depleted for purine intermediates relative to subcutaneous tumors, suggesting decreased purine synthesis during metastasis. These methods facilitate the routine metabolomic analysis of rare cells from tissues.


Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolome , Metabolomics/methods , Animals , Female , Flow Cytometry , Hydrophobic and Hydrophilic Interactions , Male , Mice
15.
Nature ; 585(7823): 113-118, 2020 09.
Article En | MEDLINE | ID: mdl-32814895

Cancer cells, including melanoma cells, often metastasize regionally through the lymphatic system before metastasizing systemically through the blood1-4; however, the reason for this is unclear. Here we show that melanoma cells in lymph experience less oxidative stress and form more metastases than melanoma cells in blood. Immunocompromised mice with melanomas derived from patients, and immunocompetent mice with mouse melanomas, had more melanoma cells per microlitre in tumour-draining lymph than in tumour-draining blood. Cells that metastasized through blood, but not those that metastasized through lymph, became dependent on the ferroptosis inhibitor GPX4. Cells that were pretreated with chemical ferroptosis inhibitors formed more metastases than untreated cells after intravenous, but not intralymphatic, injection. We observed multiple differences between lymph fluid and blood plasma that may contribute to decreased oxidative stress and ferroptosis in lymph, including higher levels of glutathione and oleic acid and less free iron in lymph. Oleic acid protected melanoma cells from ferroptosis in an Acsl3-dependent manner and increased their capacity to form metastatic tumours. Melanoma cells from lymph nodes were more resistant to ferroptosis and formed more metastases after intravenous injection than did melanoma cells from subcutaneous tumours. Exposure to the lymphatic environment thus protects melanoma cells from ferroptosis and increases their ability to survive during subsequent metastasis through the blood.


Ferroptosis , Lymph/metabolism , Melanoma/pathology , Neoplasm Metastasis/pathology , Animals , Cell Survival , Coenzyme A Ligases/metabolism , Female , Ferroptosis/drug effects , Glutathione/metabolism , Humans , Iron/metabolism , Male , Melanoma/blood , Melanoma/metabolism , Mice , Neoplasm Metastasis/drug therapy , Oleic Acid/metabolism , Oxidative Stress/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Principal Component Analysis
16.
Nature ; 577(7788): 115-120, 2020 01.
Article En | MEDLINE | ID: mdl-31853067

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood1-3. Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1high and MCT1-/low cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1high cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


Melanoma/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism , Animals , Cell Line, Tumor , Cell Survival , Humans , Melanoma/genetics , Melanoma/secondary , Mice , Monocarboxylic Acid Transporters/genetics , Oxidative Stress , Symporters/genetics , Xenograft Model Antitumor Assays
17.
Cancer Discov ; 9(9): 1208-1227, 2019 09.
Article En | MEDLINE | ID: mdl-31217296

Immune checkpoint blockade (ICB) therapy, which targets T cell-inhibitory receptors, has revolutionized cancer treatment. Among the breast cancer subtypes, evaluation of ICB has been of greatest interest in triple-negative breast cancer (TNBC) due to its immunogenicity, as evidenced by the presence of tumor-infiltrating lymphocytes and elevated PD-L1 expression relative to other subtypes. TNBC incidence is equally distributed across the age spectrum, affecting 10% to 15% of women in all age groups. Here we report that increased immune dysfunction with age limits ICB efficacy in aged TNBC-bearing mice. The tumor microenvironment in both aged mice and patients with TNBC shows decreased IFN signaling and antigen presentation, suggesting failed innate immune activation with age. Triggering innate immune priming with a STING agonist restored response to ICB in aged mice. Our data implicate age-related immune dysfunction as a mechanism of ICB resistance in mice and suggest potential prognostic utility of assessing IFN-related genes in patients with TNBC receiving ICB therapy. SIGNIFICANCE: These data demonstrate for the first time that age determines the T cell-inflamed phenotype in TNBC and affects response to ICB in mice. Evaluating IFN-related genes from tumor genomic data may aid identification of patients for whom combination therapy including an IFN pathway activator with ICB may be required.This article is highlighted in the In This Issue feature, p. 1143.


Antineoplastic Agents, Immunological/administration & dosage , Interferon-gamma/administration & dosage , Interferons/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xanthones/administration & dosage , Age Factors , Animals , Antigen Presentation , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Female , Humans , Interferon-gamma/pharmacology , Mice , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment , Xanthones/pharmacology , Xenograft Model Antitumor Assays
18.
Cell Metab ; 29(4): 785-786, 2019 04 02.
Article En | MEDLINE | ID: mdl-30943388

Many cancers metastasize regionally through lymphatics before metastasizing systemically through blood vessels. However, metastasis through blood has been studied much more extensively than metastasis through lymph. Recently in Science, Lee et al. (2019) offered new insight into lymph node metastasis by showing that melanoma cells must undergo metabolic changes during this process and that it is driven by localized accumulation of bile acids.


Lymphatic Vessels , Skin Neoplasms , Humans , Lymph Nodes , Lymphangiogenesis , Lymphatic Metastasis
19.
Cancer Res ; 78(18): 5300-5314, 2018 09 15.
Article En | MEDLINE | ID: mdl-30065048

The presence of disseminated tumor cells in breast cancer patient bone marrow aspirates predicts decreased recurrence-free survival. Although it is appreciated that physiologic, pathologic, and therapeutic conditions impact hematopoiesis, it remains unclear whether targeting hematopoiesis presents opportunities for limiting bone metastasis. Using preclinical breast cancer models, we discovered that marrow from mice treated with the bisphosphonate zoledronic acid (ZA) are metastasis-suppressive. Specifically, ZA modulated hematopoietic myeloid/osteoclast progenitor cell (M/OCP) lineage potential to activate metastasis-suppressive activity. Granulocyte-colony stimulating factor (G-CSF) promoted ZA resistance by redirecting M/OCP differentiation. We identified M/OCP and bone marrow transcriptional programs associated with metastasis suppression and ZA resistance. Analysis of patient blood samples taken at randomization revealed that women with high-plasma G-CSF experienced significantly worse outcome with adjuvant ZA than those with lower G-CSF levels. Our findings support discovery of therapeutic strategies to direct M/OCP lineage potential and biomarkers that stratify responses in patients at risk of recurrence.Significance: Bone marrow myeloid/osteoclast progenitor cell lineage potential has a profound impact on breast cancer bone metastasis and can be modulated by G-CSF and bone-targeting agents. Cancer Res; 78(18); 5300-14. ©2018 AACR.


Bone Marrow Cells/cytology , Breast Neoplasms/pathology , Cell Lineage , Hematopoietic Stem Cells/cytology , Neoplasm Metastasis/prevention & control , Animals , Antineoplastic Agents/pharmacology , Biomarkers/metabolism , Bone Marrow/pathology , Bone Neoplasms/prevention & control , Cell Differentiation , Cell Line, Tumor , Female , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoiesis , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Recurrence, Local , Osteoclasts/cytology , Osteoclasts/metabolism , Zoledronic Acid/pharmacology
20.
Nat Cell Biol ; 20(9): 1084-1097, 2018 09.
Article En | MEDLINE | ID: mdl-30154549

Lack of insight into mechanisms governing breast cancer metastasis has precluded the development of curative therapies. Metastasis-initiating cancer cells (MICs) are uniquely equipped to establish metastases, causing recurrence and therapeutic resistance. Using various metastasis models, we discovered that certain primary tumours elicit a systemic inflammatory response involving interleukin-1ß (IL-1ß)-expressing innate immune cells that infiltrate distant MIC microenvironments. At the metastatic site, IL-1ß maintains MICs in a ZEB1-positive differentiation state, preventing MICs from generating highly proliferative E-cadherin-positive progeny. Thus, when the inherent plasticity of MICs is impeded, overt metastases cannot be established. Ablation of the pro-inflammatory response or inhibition of the IL-1 receptor relieves the differentiation block and results in metastatic colonization. Among patients with lymph node-positive breast cancer, high primary tumour IL-1ß expression is associated with better overall survival and distant metastasis-free survival. Our data reveal complex interactions that occur between primary tumours and disseminated MICs that could be exploited to improve patient survival.


Breast Neoplasms/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Lung Neoplasms/metabolism , Myeloid Cells/metabolism , Tumor Microenvironment , Animals , Anti-Inflammatory Agents/pharmacology , Antigens, CD/genetics , Antigens, CD/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Cell Communication , Cell Differentiation , Cell Line, Tumor , Cell Plasticity , Cell Proliferation , Female , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/prevention & control , Interleukin-1beta/genetics , Interleukin-1beta/pharmacology , Lung Neoplasms/immunology , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Lymphatic Metastasis , Mice, Nude , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Signal Transduction , Time Factors , Xenograft Model Antitumor Assays , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
...