Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Cytotechnology ; 76(2): 209-216, 2024 Apr.
Article En | MEDLINE | ID: mdl-38495295

Fructobacillus is a lactic-acid bacterium recently identified in fructose-rich environments. Fructobacillus is also known to exhibit unusual growth characteristics due to an incomplete gene encoding alcohol/acetaldehyde hydrogenase, which results in an imbalance in the nicotinamide adenine mononucleotide (NAD+)/NADN levels. Recently, the addition of d-fructose to the culture medium of Fructobacillus strains increased the intracellular nicotinamide mononucleotide (NMN) content. In the present study, we evaluated the functionality of Fructobacillus that produces high levels of NMN, using one substrain (Fructobacillus fructosus OS-1010). Therefore, in this study, we examined its functionality in the interaction between intestinal cells and muscle cells. The results showed that supernatant derived from intestinal epithelial cells (Caco-2 cells) treated with F. fructosus OS-1010 activated muscle cells (C2C12 cells). Further analysis revealed that Caco-2 cells treated with F. fructosus OS-1010 secreted exosomes known as extracellular vesicles, which activated the muscle cells. Furthermore, pathway analysis of the target genes of miRNA in exosomes revealed that pathways involved in muscle cell activation, including insulin signaling and cardiac muscle regulation, neurotrophic factors, longevity, and anti-aging, can be activated by exosomes. In other words, F. fructosus OS-1010 could activate various cells such as the skin and muscle cells, by secreting functional exosomes from the intestinal tract.

2.
Nutrients ; 15(6)2023 Mar 19.
Article En | MEDLINE | ID: mdl-36986209

Carnosine is known to improve brain function. The molecular basis for the carnosine-mediated interaction between intestinal cells and neuronal cells is that carnosine acts on intestinal cells and stimulates exosome secretion, which can induce neurite outgrowth in neuronal cells. This study aimed to infer the carnosine-mediated interaction between muscle cells and neuronal cells. The results revealed that carnosine induces muscle cell differentiation, as well as the secretion of exosomes and myokines that can act on neuronal cells. Carnosine acts not only on intestinal cells but also on muscle cells, stimulating the secretion of secretory factors including exosomes that induce neurite outgrowth in neuronal cells, as well as myokines known to be involved in neuronal cell activation. As the miRNAs in exosomes secreted from intestinal cells and muscle cells upon carnosine treatment are different, it could be assumed that carnosine acts on each cell to interact with neuronal cell through separate factors and mechanisms.


Carnosine , MicroRNAs , Carnosine/pharmacology , Carnosine/metabolism , Neurons/metabolism , Brain/metabolism , Muscles/metabolism
3.
Nutrients ; 14(14)2022 Jul 13.
Article En | MEDLINE | ID: mdl-35889819

Regulatory T cells (Tregs) and CD4+/CD25+ T cells play an important role in the suppression of excessive immune responses, homeostasis of immune function, and oral tolerance. In this study, we screened for food-derived polyphenols that induce Tregs in response to retinaldehyde dehydrogenase (RALDH2) activation using macrophage-like THP-1 cells. THP-1 cells were transfected with an EGFP reporter vector whose expression is regulated under the control of mouse Raldh2 promoter and named THP-1 (Raldh2p-EGFP) cells. The THP-1 (Raldh2p-EGFP) cells were treated with 33 polyphenols after inducing their differentiation into macrophage-like cells using phorbol 12-myristate 13-acetate. Of the 33 polyphenols, five (kaempferol, quercetin, morin, luteolin and fisetin) activated Raldh2 promoter activity, and both quercetin and luteolin activated the endogenous Raldh2 mRNA expression and enzymatic activity. Furthermore, these two polyphenols increased transforming growth factor beta 1 and forkhead box P3 mRNA expression, suggesting that they have Treg-inducing ability. Finally, we verified that these polyphenols could induce Tregs in vivo and consequently induce IgA production. Oral administration of quercetin and luteolin increased IgA production in feces of mice. Therefore, quercetin and luteolin can induce Tregs via RALDH2 activation and consequently increase IgA production, suggesting that they can enhance intestinal barrier function.


Polyphenols , T-Lymphocytes, Regulatory , Aldehyde Oxidoreductases/metabolism , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Immunoglobulin A/metabolism , Luteolin/pharmacology , Mice , Polyphenols/pharmacology , Quercetin/pharmacology , RNA, Messenger/metabolism
4.
Hepatol Commun ; 6(7): 1725-1740, 2022 07.
Article En | MEDLINE | ID: mdl-35220676

Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Cell Line , Endothelial Cells , Humans , Liver Neoplasms/genetics , Mice , Plasmids
5.
Nutrients ; 13(8)2021 Jul 25.
Article En | MEDLINE | ID: mdl-34444704

γ-Aminobutyric acid (GABA) is a potent bioactive amino acid, and several studies have shown that oral administration of GABA induces relaxation, improves sleep, and reduces psychological stress and fatigue. In a recent study, we reported that exosomes derived from GABA-treated intestinal cells serve as signal transducers that mediate brain-gut interactions. Therefore, the purpose of this study was to verify the functionality of GABA-derived exosomes and to examine the possibility of improving memory function following GABA administration. The results showed that exosomes derived from GABA-treated intestinal cells (Caco-2) activated neuronal cells (SH-SY5Y) by regulating genes related to neuronal cell functions. Furthermore, we found that exosomes derived from the serum of GABA-treated mice also activated SH-SY5Y cells, indicating that exosomes, which are capable of activating neuronal cells, circulate in the blood of mice orally administered GABA. Finally, we performed a microarray analysis of mRNA isolated from the hippocampus of mice that were orally administered GABA. The results revealed changes in the expression of genes related to brain function. Gene Set Enrichment Analysis (GSEA) showed that oral administration of GABA affected the expression of genes related to memory function in the hippocampus.


Exosomes/metabolism , Memory/drug effects , Neurons/metabolism , gamma-Aminobutyric Acid/administration & dosage , Administration, Oral , Animals , Caco-2 Cells/metabolism , Hippocampus/metabolism , Humans , Mice , MicroRNAs/metabolism , Models, Animal
6.
Nutrients ; 13(6)2021 Jun 18.
Article En | MEDLINE | ID: mdl-34207142

Enhanced telomerase reverse transcriptase (TERT) levels in dermal keratinocytes can serve as a novel target for hair growth promotion. Previously, we identified fisetin using a system for screening food components that can activate the TERT promoter in HaCaT cells (keratinocytes). In the present study, we aimed to clarify the molecular basis of fisetin-induced hair growth promotion in mice. To this end, the dorsal skin of mice was treated with fisetin, and hair growth was evaluated 12 days after treatment. Histochemical analyses of fisetin-treated skin samples and HaCaT cells were performed to observe the effects of fisetin. The results showed that fisetin activated HaCaT cells by regulating the expression of various genes related to epidermogenesis, cell proliferation, hair follicle regulation, and hair cycle regulation. In addition, fisetin induced the secretion of exosomes from HaCaT cells, which activated ß-catenin and mitochondria in hair follicle stem cells (HFSCs) and induced their proliferation. Moreover, these results revealed the existence of exosomes as the molecular basis of keratinocyte-HFSC interaction and showed that fisetin, along with its effects on keratinocytes, caused exosome secretion, thereby activating HFSCs. This is the first study to show that keratinocyte-derived exosomes can activate HFSCs and consequently induce hair growth.


Exosomes , Flavonols/therapeutic use , Hair/drug effects , Hair/growth & development , Keratinocytes/drug effects , Keratinocytes/metabolism , Animals , Cell Proliferation/drug effects , Female , HaCaT Cells , Hair/metabolism , Hair Follicle/drug effects , Hair Follicle/metabolism , Humans , Mice , Mice, Inbred C57BL , Sirtuin 1/metabolism , Skin , Skin Physiological Phenomena/drug effects , Stem Cells , Telomerase
7.
Nat Commun ; 11(1): 5292, 2020 10 21.
Article En | MEDLINE | ID: mdl-33087715

Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases.


Cellular Reprogramming Techniques/methods , Endothelial Cells/cytology , Hepatocytes/cytology , Stem Cells/cytology , Animals , Bile Ducts/cytology , Bile Ducts/physiology , Cell Aggregation , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Endothelial Cells/physiology , Female , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/physiology , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocyte Nuclear Factor 3-gamma/physiology , Hepatocyte Nuclear Factor 6/genetics , Hepatocyte Nuclear Factor 6/physiology , Hepatocytes/physiology , Hepatocytes/transplantation , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Spheroids, Cellular/cytology , Spheroids, Cellular/physiology , Stem Cells/physiology
8.
Mol Cell ; 79(4): 660-676.e8, 2020 08 20.
Article En | MEDLINE | ID: mdl-32755593

Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.


Hepatocyte Nuclear Factor 3-gamma/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Liver/cytology , Liver/physiology , Transcriptional Activation , Animals , Binding Sites , Cells, Cultured , Cellular Reprogramming/physiology , Chromatin/metabolism , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression Regulation , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocyte Nuclear Factor 4/genetics , Mice, Inbred C57BL , Protein Domains , Transcription Initiation Site
9.
Cell Rep ; 25(1): 183-198, 2018 10 02.
Article En | MEDLINE | ID: mdl-30282027

Recent progress in direct lineage reprogramming has enabled the generation of induced hepatocyte-like (iHep) cells and revealed their potential as an alternative to hepatocytes for medical applications. However, the hepatic functions of iHep cells are insufficient compared with those of primary hepatocytes. Here, we show that cell-aggregate formation can rapidly induce growth arrest and hepatic maturation of iHep cells through activation of Hippo signaling. During formation of iHep cell aggregates, Yap inactivation is induced by actin reorganization and intercellular adhesion, leading to upregulation of Hnf1α expression in the absence of the Yap/Tead/Chd4 transcriptional repressor unit. Hnf1α then acts as a central transcription factor that regulates liver-enriched gene expression in iHep cell aggregates and induces functional differentiation of iHep cells. Moreover, iHep cell aggregates efficiently reconstitute injured liver tissues and support hepatic function after transplantation. Thus, iHep cell aggregates may provide insights into basic research and potential therapies for liver diseases.


Hepatocytes/cytology , Hepatocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Aggregation/physiology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Growth Processes/physiology , Cells, Cultured , Hepatocyte Nuclear Factor 1-alpha , Hippo Signaling Pathway , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Transcriptome , Up-Regulation
10.
Cancer Sci ; 109(11): 3543-3553, 2018 Nov.
Article En | MEDLINE | ID: mdl-30220099

Hepatocellular carcinoma (HCC) accounts for a large proportion of liver cancer cases and has an extremely poor prognosis. Therefore, novel innovative therapies for HCC are strongly desired. As gene therapy tools for HCC, 2 hepatic transcription factors (TF), HNF4A and HNF1A, have been used to suppress proliferation and to extinguish cancer-specific characteristics of target cells. However, our present data demonstrated that single transduction of HNF4A or HNF1A had only a limited effect on suppression of HCC cell proliferation. Thus, in this study, we examined whether combinations of TF could show more effective antitumor activity, and found that combinatorial transduction of 3 hepatic TF, HNF4A, HNF1A and FOXA3, suppressed HCC cell proliferation more stably than single transduction of these TF. The combinatorial transduction also suppressed cancer-specific phenotypes, such as anchorage-independent growth in culture and tumorigenicity after transplantation into mice. HCC cell lines transduced with the 3 TF did not recover their proliferative property after withdrawal of anticancer drugs, indicating that combinatorial expression of the 3 TF suppressed the growth of all cell subtypes within the HCC cell lines, including cancer stem-like cells. Transcriptome analyses revealed that the expression levels of a specific gene set involved in cell proliferation were only decreased in HCC cells overexpressing all 3 TF. Moreover, combined transduction of the 3 TF could facilitate hepatic differentiation of HCC cell lines. Our strategy for inducing stable inhibition and functional differentiation of tumor cells using a defined set of TF will become an effective therapeutic strategy for various types of cancers.


Carcinoma, Hepatocellular/drug therapy , Genetic Vectors/administration & dosage , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocyte Nuclear Factor 4/genetics , Liver Neoplasms/drug therapy , Animals , Carcinoma, Hepatocellular/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Genetic Vectors/pharmacology , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Mice , Xenograft Model Antitumor Assays
11.
FEBS Open Bio ; 8(6): 914-922, 2018 Jun.
Article En | MEDLINE | ID: mdl-29928571

l-Serine (l-Ser) is a necessary precursor for the synthesis of proteins, lipids, glycine, cysteine, d-serine, and tetrahydrofolate metabolites. Low l-Ser availability activates stress responses and cell death; however, the underlying molecular mechanisms remain unclear. l-Ser is synthesized de novo from 3-phosphoglycerate with 3-phosphoglycerate dehydrogenase (Phgdh) catalyzing the first reaction step. Here, we show that l-Ser depletion raises intracellular H2O2 levels and enhances vulnerability to oxidative stress in Phgdh-deficient mouse embryonic fibroblasts. These changes were associated with reduced total glutathione levels. Moreover, levels of the inflammatory markers thioredoxin-interacting protein and prostaglandin-endoperoxide synthase 2 were upregulated under l-Ser-depleted conditions; this was suppressed by the addition of N-acetyl-l-cysteine. Thus, intracellular l-Ser deficiency triggers an inflammatory response via increased oxidative stress, and de novo l-Ser synthesis suppresses oxidative stress damage and inflammation when the external l-Ser supply is restricted.

12.
NPJ Aging Mech Dis ; 3: 11, 2017.
Article En | MEDLINE | ID: mdl-28868154

Previously, we have identified 16 senescence-associated genes by a subtractive proteomic analysis using presenescent and senescent human fibroblast cells, TIG-1. The aim of this study was to clarify the role of SMARCD1, one of the identified genes, also known as BAF60a, in hepatic senescence. SMARCD1 is a member of the SWI/SNF chromatin remodeling complex family, and regulates the transcription of target genes through the alterations of chromatin structure. We demonstrated that the reduced expression of SMARCD1 triggers cellular senescence and induces the accumulation of lipids, suggesting that SMARCD1 acts as a mediator in these processes. Furthermore, palmitic acid treatment and high-fat diet led to a significant reduction of SMARCD1 expression, and consequently induced cellular senescence and lipid accumulation in HepG2 cells and mouse liver, respectively. The results obtained here suggest that dietary nutrient-associated impaired expression of SMARCD1 triggers cellular senescence and lipid accumulation, indicating a potential application of SMARCD1 in the prevention of lifestyle-related diseases.

13.
FEBS Open Bio ; 6(4): 303-16, 2016 04.
Article En | MEDLINE | ID: mdl-27239443

UNLABELLED: Reduced availability of l-serine limits cell proliferation and leads to an adaptation to l-serine-deficient environment, the underlying molecular mechanism of which remain largely unexplored. Genetic ablation of 3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo l-serine synthesis, led to diminished cell proliferation and the activation of p38 MAPK and stress-activated protein kinase/Jun amino-terminal kinase in mouse embryonic fibroblasts under l-serine depletion. The resultant l-serine deficiency induced cyclin-dependent kinase inhibitor 1a (Cdkn1a; p21) expression, which was mediated by p38 MAPK. Survival of the Phgdh-deficient mouse embryonic fibroblasts was markedly reduced by p38 MAPK inhibition under l-serine depletion, whereas p38 MAPK could be activated by 1-deoxysphinganine, an atypical alanine-derived sphingoid base that was found to accumulate in l-serine-depleted mouse embryonic fibroblasts. These observations provide persuasive evidence that when the external l-serine supply is limited, l-serine synthesized de novo in proliferating cells serves as a metabolic gatekeeper to maintain cell survival and the functions necessary for executing cell cycle progression. DATABASE: Gene Expression Omnibus, accession number GSE55687.

14.
Hepatology ; 64(1): 245-60, 2016 07.
Article En | MEDLINE | ID: mdl-26990797

UNLABELLED: In liver development, hepatoblasts that act as hepatic stem/progenitor cells proliferate and differentiate into both hepatocytes and cholangiocytes to form liver tissues. Although numerous factors contribute to this event, little is known about the roles of microRNAs in hepatoblast proliferation and differentiation. In this study, we focused on the lineage-28 (Lin28) family proteins, which are required for microRNA regulation in pluripotent stem cells and cancer cells, and investigated their roles as regulatory factors for the properties of hepatoblasts. CONCLUSION: Lin28b was specifically expressed in hepatoblasts, and its suppression induced growth arrest and cholangiocyte differentiation of hepatoblasts; mechanistically, Lin28b positively regulates the expression of Lin28b itself and cell cycle-related proteins in hepatoblasts by suppressing the maturation of target microRNAs, lethal-7b and miR-125a/b, enabling maintenance of the stem cell properties of hepatoblasts, such as their capabilities for proliferation and bi-lineage differentiation, during liver development. (Hepatology 2016;64:245-260).


DNA-Binding Proteins/metabolism , Liver/cytology , MicroRNAs/metabolism , Stem Cells/metabolism , Animals , Cell Proliferation , Mice, Inbred C57BL , Mice, Inbred ICR , RNA-Binding Proteins
15.
Sci Rep ; 5: 17342, 2015 Nov 27.
Article En | MEDLINE | ID: mdl-26611489

Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.


Fibroblasts/metabolism , Golgi Apparatus/metabolism , Proton-Translocating ATPases/genetics , Carbohydrate Sequence , Cell Line , Cellular Senescence , Fibroblasts/cytology , Gene Expression Profiling , Gene Expression Regulation , Glycosylation , Humans , Molecular Sequence Data , Protein Transport , Proteomics , Proton-Translocating ATPases/antagonists & inhibitors , Proton-Translocating ATPases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Staining and Labeling/methods
16.
Immunobiology ; 219(2): 149-57, 2014 Feb.
Article En | MEDLINE | ID: mdl-24157279

In vitro antigen stimulation of peripheral blood mononuclear cells (PBMCs) does not induce immunoglobulin (Ig) production. However, pretreatment of PBMCs with l-leucyl-l-leucine methyl ester (LLME) prior to in vitro stimulation removes the suppression of Ig production. In the present study, we attempted to identify the target cells of LLME and determine the mechanisms by which Ig production in PBMCs is suppressed. We found that CD14(+) monocytes are involved in the suppression of Ig production in PBMCs. Furthermore, we confirmed that heavy-chain ferritin derived from CD14(+) monocytes suppresses Ig production in PBMCs, possibly through iron sequestration.


Apoferritins/metabolism , B-Lymphocytes/immunology , Leukocytes, Mononuclear/immunology , Monocytes/metabolism , Antibody Formation/drug effects , Apoferritins/immunology , Cell Communication , Cells, Cultured , Dipeptides/chemistry , Dipeptides/pharmacology , Humans , Immunosuppression Therapy , Iron/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation/drug effects , Methyl Ethers/chemistry , Methyl Ethers/pharmacology , Monocytes/drug effects , Monocytes/immunology
17.
Methods ; 56(3): 383-8, 2012 Mar.
Article En | MEDLINE | ID: mdl-22406489

Until now, various stimuli as well as serial passaging have been known to induce cellular senescence in normal human diploid fibroblasts. However, in many cases, we have encountered difficulty in quantitatively analyzing the cellular senescence phenotypes of senescent cells in a physiological condition. High-content screening (HCS)-based image analysis is becoming an important and powerful research tool. In the present study, an automated and quantitative cellular image-analysis system was employed to quantify the cellular senescence phenotypes induced in normal human diploid fibroblasts, TIG-1 cells, and found to be a powerful tool in the cellular senescence study.


Cellular Senescence , Image Cytometry/methods , Cells, Cultured , Humans , Phenotype
18.
Biochem Biophys Res Commun ; 417(1): 630-4, 2012 Jan 06.
Article En | MEDLINE | ID: mdl-22197555

SIRT1, the mammalian homolog of sirtuins, has emerged as a mediator of the beneficial effects of calorie restriction. Among them, we focused on the SIRT1-induced prevention of cellular senescence, and tried to reveal the molecular mechanisms that define the effects of SIRT1. Firstly in this study, we observed that overexpression of SIRT1 resulted in the prevention of cellular senescence of normal human umbilical cord fibroblast HUC-F2 cells. Here, we focused on the human telomerase reverse transcriptase (hTERT) gene as a target of the SIRT1-induced prevention of cellular senescence. Results showed that SIRT1, SIRT1 activator, resveratrol, and SIRT1 activating condition, starved condition, increased the transcription of hTERT in HUC-F2 cells. Next, we found that SIRT1 increased hTERT transcription in a c-MYC-dependent manner, triggered the transcription of the c-MYC gene and increased the amount of c-MYC recruited to the hTERT promoter. Further, SIRT1 increased the transcriptional activation ability of c-MYC and correspondingly increased the amount of acetylated H4 histone at the hTERT promoter. All of these results indicated that SIRT1 activates hTERT transcription through the involvement of c-MYC, and suggested that this SIRT1-induced augmentation of hTERT transcription resulted in the extension of the cellular life span of HUC-F2 cells.


Cellular Senescence/genetics , Gene Expression Regulation, Enzymologic , Sirtuin 1/metabolism , Telomerase/genetics , Transcription, Genetic , Cells, Cultured , Fibroblasts/enzymology , Fibroblasts/physiology , Humans , Proto-Oncogene Proteins c-myc/metabolism , Sirtuin 1/genetics , Umbilical Cord/cytology , Umbilical Cord/enzymology , Umbilical Cord/physiology
19.
Lipids Health Dis ; 9: 134, 2010 Nov 23.
Article En | MEDLINE | ID: mdl-21092258

BACKGROUND: Kurozu concentrated liquid (KCL) is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. METHODS: Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. RESULTS: In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2) and peroxisome proliferator-activated γ (PPARγ) in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. CONCLUSION: Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.


Adipocytes/cytology , Adipocytes/drug effects , Dietary Supplements , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipose Tissue/cytology , Animals , Cell Size/drug effects , Male , Mice , Obesity , Oryza/chemistry , Oryza/microbiology , Rats , Rats, Sprague-Dawley
20.
Exp Cell Res ; 316(20): 3342-50, 2010 Dec 10.
Article En | MEDLINE | ID: mdl-20937271

We aimed to clarify the transcription-regulation mechanisms of the mouse telomerase reverse transcriptase gene (mTERT). First, we searched for the promoter region required for transcriptional activation of mTERT and identified an enhancer cis-element (named mTERT-EE) located between -200 and -179bp of the mouse TERT gene (mTERT). EMSA results suggested that nuclear factor of activated T cells (NFAT) member proteins bind to mTERT-EE. We then identified NFAT5 as the factor binding to mTERT-EE and found that it activates the transcription of the mTERT core promoter. The results that siRNA directed against NFAT5 significantly reduced mTERT expression and mTERT core promoter activity and that the expressions of NFAT5 and mTERT were well correlated in various mouse tissues except liver suggest that NFAT5 dominantly and directly regulates mTERT expression. To clarify their functionality further, we investigated the effect of hypertonic stress, a known stimulus affecting the expression and transcriptional activity of NFAT5, on mTERT expression. The result indicated that hypertonic stress activates mTERT transcription via the activation and recruitment of NFAT5 to the mTERT promoter. These results provide useful information about the transcription-regulation mechanisms of mTERT.


Gene Expression Regulation , Telomerase/genetics , Transcription Factors/metabolism , Transcription, Genetic , Animal Structures/metabolism , Animals , Binding Sites/genetics , Cell Extracts/chemistry , Cell Nucleus/chemistry , Cell Survival/genetics , Electrophoretic Mobility Shift Assay , Enhancer Elements, Genetic/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression/drug effects , Gene Expression/genetics , Genes, Reporter/genetics , Hypertonic Solutions/pharmacology , Mice , Mice, Inbred Strains , Mutation/genetics , NFATC Transcription Factors/metabolism , NIH 3T3 Cells , Promoter Regions, Genetic/genetics , RNA, Small Interfering/genetics , Stress, Physiological/genetics , Transcription Factors/genetics
...