Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Fitoterapia ; 175: 105972, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657781

RESUMEN

Molecular dereplication and drug-like discovery are important tools for exploring the chemical profile of metabolites in a complex mixture. In order to establish a workflow for discovering novel acetylcholinesterase (AChE) ligands, we performed the chemical study of Myrsine guianensis (Aubl.) Kuntze (Primulaceae). To carry out the bioprospection, nine extracts were obtained from different parts of the plant. Through the dereplication approaches, seventeen metabolites were annotated. In order to confirm the putative inferences, a HPLC preparative method was developed to isolate three known myrsinoic acids, A(1), B(2) and C(3). Along with, we are reporting the obtention of two new congeners, G(5) and H(6), which their structures were elucidated by NMR and HRMS data. Besides that, two extracts were submitted to affinity assays to accelerate the discovery of AChE ligands. Desorbates were analyzed through LC-HRMS for calculating the affinity ratio (AR). Thus, (1) presented AR = 4.59, therefore was considered a potential ligand.


Asunto(s)
Acetilcolinesterasa , Estructura Molecular , Ligandos , Acetilcolinesterasa/metabolismo , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Inhibidores de la Colinesterasa/química
2.
Chem Biol Drug Des ; 101(6): 1299-1306, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36752700

RESUMEN

In this study, five neolignans were isolated from Saururus cernuus-threo-dihydroguaiaretic acid (1), threo-austrobailignan-6 (2), threo-austrobailignan-5 (3), verrucosin (4), and saucernetin (5)-and have their cytotoxic effects evaluated in prostate cancer cell lines (PC3 and DU145). Initially, using an in silico approach, tested compounds were predicted to be absorbed by the gastrointestinal tract, be able to permeate the blood-brain barrier and did not show any alert in PAINS (pan-assay structures interference). In vitro assays showed that compounds 2, 4, and 5 reduced cell viability of DU145 cell line at 100 µmol/L after 48 h while compounds 1 and 3 showed to be inactive at the same conditions. Furthermore, compounds 4 and 5 reduced cell number as early as in 24 h at 50 µmol/L and compound 2 showed effects at 100 µmol/L in 24 h against both cancer cell lines PC3 and DU145. Studies using flow cytometry were conducted and indicated that compound 4 induced strong necrosis and apoptosis whereas compound 5 induced strong necrosis. Otherwise, less active compound 2 did not show evidence of induction of apoptosis or necrosis, suggesting that its mechanism of action involves inhibition of cell proliferation. In conclusion, compounds 4 and 5 have been shown to be promising cytotoxic agents against prostate cancer cell lines and can be used as a starting point for the development of new drugs for the treatment of prostate cancer.


Asunto(s)
Antineoplásicos , Lignanos , Neoplasias de la Próstata , Saururaceae , Masculino , Humanos , Saururaceae/química , Lignanos/farmacología , Lignanos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral , Necrosis/tratamiento farmacológico
3.
Metabolites ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36676948

RESUMEN

Penicillium setosum represents a Penicillium species recently described, with little up-to-date information about its metabolic and biological potential. Due to this scenario, we performed chemical and biological studies of P. setosum CMLD18, a strain isolated from Swinglea glutinosa (Rutaceae). HRMS-MS guided dereplication strategies and anti-leukemia assays conducted the isolation and characterization of six compounds after several chromatographic procedures: 2-chloroemodic acid (2), 2-chloro-1,3,8-trihydroxy-6- (hydroxymethyl)-anthraquinone (7), 7-chloroemodin (8), bisdethiobis(methylthio)acetylaranotine (9), fellutanine C (10), and 4-methyl-5,6-diihydro-2H-pyran-2-one (15). From the assayed metabolites, (10) induced cellular death against Kasumi-1, a human leukemia cell line, as well as good selectivity for it, displaying promising cytotoxic activity. Here, the correct NMR signal assignments for (9) are also described. Therefore, this work highlights more detailed knowledge about the P. setosum chemical profile as well as its biological potential, offering prospects for obtaining natural products with anti-leukemia capabilities.

4.
Arch Biochem Biophys ; 696: 108654, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130087

RESUMEN

ß-Sitosterol (ßSito) is the most abundant phytosterol found in vegetable oils, grains such as wheat, beans, and corn, and in many phytosterol-enriched foods. It is prone to oxidation by reactive oxygen species, such as ozone, leading to the formation of oxyphytosterols. A better understanding regarding the biological effects and mechanism of action of oxyphytosterols is required since the beneficial and adverse side effects of these compounds on human health remain highly controversial. In this work, we investigated the biological effects of ß-Secosterol (ßSec), a new oxyphytosterol generated by the reaction of ßSito with ozone. Treatment of HepG2 cells with ßSito or ßSec (0.1-100 µM) for 24, 48, and 72 h induced a dose-dependent reduction of cell viability in the MTT assay, with ßSec showing higher efficacy than ßSito. However, ßSec presented a lower potency than ßSito, showing IC50 = 37.32 µM, higher than ßSito (IC50 = 0.23 µM) at 48 h. Cell cycle analyses by flow cytometry showed a slight decrease of G0/G1 phase with ßSito 0.5 µM, but a significant cell cycle arrest at the G0/G1 phase in the treatment for 48 h with ßSec 20 µM (62.69 ± 2.15%, p < 0.05) and ßSec 40 µM (66.96 ± 5.39%, p < 0.0001) when compared to control (56.97 ± 2.60%). No suggestion of apoptosis was indicated by flow cytometry data. Also, ßSec (20 and 40 µM) reduced the mitotic index. In the laser scanning confocal microscopy analysis no alterations in cell morphology were observed with ßSito (0.5 µM). Nevertheless, round-shaped cells, abnormal nuclear morphology with shrinkage, and formation of microtubules clusters were observed in the treatment with ßSec, indicating a disruption in the microtubules network organization. N-acetyl-l-cysteine was not able to inhibit any of these cellular effects, indicating a lack of involvement of oxidative stress in the mechanism of action of ßSec. Although not further investigated in this study, it was discussed the hypothesis that covalent adduct formation with lysine residues of proteins, could play an important role in the biological effects elicited by ßSec. Elucidation of the primary cellular processes induced by ßSec provides the essential knowledge to be aware of its potential adverse side effects or therapeutic use of this oxyphytosterol.


Asunto(s)
Sitoesteroles/farmacología , Acetilcisteína/farmacología , Núcleo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Microtúbulos/efectos de los fármacos , Índice Mitótico , Estrés Oxidativo/efectos de los fármacos , Ozono/química , Sitoesteroles/síntesis química , Sitoesteroles/química
5.
Arch Biochem Biophys ; 689: 108472, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32590065

RESUMEN

ß-Sitosterol (ßSito) is the most abundant phytosterol found in elevated concentrations in vegetable oils, nuts, seeds, cereals, fruits, and in many phytosterol-enriched foods. Although the benefits, there is a concern in terms of food quality and health due to the increasing consumption of phytosterols and the possible adverse side effects of their oxidation products, oxyphytosterols. ßSito has a similar structure to cholesterol, with an unsaturated double bond at C5-C6, which is susceptible to oxidation by reactive oxygen species like ozone, generating oxyphytosterols. In this work we propose a mechanism of formation of three oxyphytosterols 2-[(7aR)-5-[(1R,4S)-4-hydroxy-1-methyl-2-oxocyclohexyl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7- octahydroinden-4-yl] acetaldehyde (ßSec), (2-[(7aR)-5-[(2R,5S)-5-hydroxy-2-methyl-7-oxo-oxepan- 2-yl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7-octahydroinden-4- yl] acetaldehyde (ßLac) and 2-((7aR)-5-((1R,4S)-4-hydroxy-1-methyl-2- oxocyclohexyl)-1,7a-dimethyloctahydro-1Hinden-4-yl) acetic acid (ßCOOH) generated by ozonization of ßSito, through their synthesis and molecular characterization. The cytotoxic effect of ßSito and its main oxyphytosterol ßSec was evaluated and both reduced the HepG2 cell viability.


Asunto(s)
Ozono/metabolismo , Fitosteroles/metabolismo , Sitoesteroles/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Oxidación-Reducción , Fitosteroles/química , Fitosteroles/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Sitoesteroles/química , Sitoesteroles/toxicidad
6.
Arch Biochem Biophys, v. 689, 108472, jun. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3079

RESUMEN

ß-Sitosterol (ßSito) is the most abundant phytosterol found in elevated concentrations in vegetable oils, nuts, seeds, cereals, fruits, and in many phytosterol-enriched foods. Although the benefits, there is a concern in terms of food quality and health due to the increasing consumption of phytosterols and the possible adverse side effects of their oxidation products, oxyphytosterols. ßSito has a similar structure to cholesterol, with an unsaturated double bond at C5–C6, which is susceptible to oxidation by reactive oxygen species like ozone, generating oxyphytosterols. In this work we propose a mechanism of formation of three oxyphytosterols 2-[(7aR)-5-[(1R,4S)-4-hydroxy-1-methyl-2-oxocyclohexyl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7- octahydroinden-4-yl]acetaldehyde (ßSec), (2-[(7aR)-5-[(2R,5S)-5-hydroxy-2-methyl-7-oxo-oxepan- 2-yl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7-octahydroinden-4- yl] acetaldehyde (ßLac) and 2-((7aR)-5-((1R,4S)-4-hydroxy-1-methyl-2- oxocyclohexyl)-1,7a-dimethyloctahydro-1Hinden-4-yl) (ßCOOH) generated by ozonization of ßSito, through their synthesis and molecular characterization. The cytotoxic effect of ßSito and its main oxyphytosterol ßSec was evaluated and both reduced the HepG2 cell viability.

7.
Arch. Biochem. Biophys. ; .(.): 108472, 2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17756

RESUMEN

ß-Sitosterol (ßSito) is the most abundant phytosterol found in elevated concentrations in vegetable oils, nuts, seeds, cereals, fruits, and in many phytosterol-enriched foods. Although the benefits, there is a concern in terms of food quality and health due to the increasing consumption of phytosterols and the possible adverse side effects of their oxidation products, oxyphytosterols. ßSito has a similar structure to cholesterol, with an unsaturated double bond at C5–C6, which is susceptible to oxidation by reactive oxygen species like ozone, generating oxyphytosterols. In this work we propose a mechanism of formation of three oxyphytosterols 2-[(7aR)-5-[(1R,4S)-4-hydroxy-1-methyl-2-oxocyclohexyl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7- octahydroinden-4-yl]acetaldehyde (ßSec), (2-[(7aR)-5-[(2R,5S)-5-hydroxy-2-methyl-7-oxo-oxepan- 2-yl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7-octahydroinden-4- yl] acetaldehyde (ßLac) and 2-((7aR)-5-((1R,4S)-4-hydroxy-1-methyl-2- oxocyclohexyl)-1,7a-dimethyloctahydro-1Hinden-4-yl) (ßCOOH) generated by ozonization of ßSito, through their synthesis and molecular characterization. The cytotoxic effect of ßSito and its main oxyphytosterol ßSec was evaluated and both reduced the HepG2 cell viability.

8.
Bioorg Med Chem Lett ; 29(12): 1459-1462, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31000155

RESUMEN

Chagas disease represents one of several neglected diseases with a reduced number of chemotherapeutical drugs including the highly toxic compounds benznidazole and nifurtimox. In this sense, natural products represent an import scaffold for the discovery of new biologically active compounds, in which chalcones are promising representatives due to their antitrypanosomal potential. In this work, a series of 36 chalcone derivatives were synthesized and tested against trypomastigotes of Trypanosoma cruzi. In addition, a detailed investigation on their molecular features was performed. The obtained results suggest that certain molecular features are fundamental for an efficient antitrypanosomal potential of chalcones, such as allylic groups, α,ß-unsaturated carbonyl system, and aromatic hydroxyl groups. These results were obtained based on the interpretation of machine-learning and multivariate statistical methods, which revealed the essential characteristics of chalcone prototypes against trypomastigotes of T. cruzi.


Asunto(s)
Chalconas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Animales , Chalconas/farmacología , Análisis Multivariante , Relación Estructura-Actividad
9.
Nat Prod Res ; 33(12): 1778-1782, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29424240

RESUMEN

Here is reported the anti Leishmania infantum activity of 48 hexane, CH2Cl2 and MeOH extracts from 16 macroalgae collected on the Iberian Coast. Seven hexane and CH2Cl2 Cystoseira baccata, Cystoseira barbata, Cystoseira tamariscifolia, Cystoseira usneoides, Dictyota spiralis and Plocamium cartilagineum extracts were active towards promastigotes (IC50 29.8-101.8 µg/mL) inducing strong morphological alterations in the parasites. Hexane extracts of C. baccata and C. barbata were also active against intracellular amastigotes (IC50 5.1 and 6.8 µg/mL, respectively). Fatty acids, triacylglycerols, carotenoids, steroids and meroterpenoids were detected by nuclear magnetic resonance (NMR), and gas chromatography in the Cystoseira extracts. These results suggest that Cystoseira macroalgae contain compounds with antileishmanial activity, which could be explored as scaffolds to the development of novel sources of antiparasitic derivatives.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Phaeophyceae/química , Algas Marinas/química , Antiprotozoarios/química , Carotenoides/análisis , Cromatografía de Gases , Evaluación Preclínica de Medicamentos/métodos , Ácidos Grasos/análisis , Ácidos Grasos/química , Espectroscopía de Resonancia Magnética , Esteroides/análisis
10.
Phytomedicine ; 24: 62-67, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28160863

RESUMEN

BACKGROUND: From a previous screening of Brazilian biodiversity for antiprotozoal activity, the hexane extract from leaves of Nectandra leucantha (Nees & Mart.) (Lauraceae) demonstrated activity against Trypanosoma cruzi. Chromatographic separation of this extract afforded bioactive dehydrodieugenol (1). Furthermore, methylated derivative 2 (dehydrodieugenol dimethyl ether) was prepared and also tested against T. cruzi. PURPOSE: To examine the therapeutical potential of compounds 1 and 2 against T. cruzi as well as to elucidate the mechanism of action of bioactive compound 1 against T. cruzi. METHODS/STUDY DESIGN: Crude hexane extract from leaves was subjected to chromatographic steps to afford bioactive compound 1. In order to analyze the effect of additional methyl group in the antiparasitic activity of 1, derivative 2 was prepared (both are no pan-assay interference compounds - PAINS). These compounds were evaluated in vitro against T. cruzi (trypomastigote and amastigote forms) and analyzed for the potential effect in host cells through the production of nitric oxide and reactive oxygen species. Finally, the plasma membrane effect of the most potent compound 1 was investigated in T. cruzi trypomastigotes. RESULTS: Compounds 1 and 2 displayed activity against amastigotes of T. cruzi. Although both compounds promoted activity against intracellular amastigotes, the production of nitric oxide and reactive oxygen species of host cells were unaltered, suggesting an antiparasitic activity other than host cell activation. Considering 1 the most effective compound against T. cruzi, the interference in the plasma membrane of the trypomastigotes was investigated using the fluorescent probe SYTOX® Green. After a short-term incubation, the fluidity and integrity of the plasma membrane was completely altered, suggesting it as a primary target for compound 1 in T. cruzi. CONCLUSION: Compounds 1 and 2 selectively eliminated the intracellular parasites without host cell activation and could be important scaffolds for the search of new hit compounds.


Asunto(s)
Antiprotozoarios/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Eugenol/uso terapéutico , Lauraceae/química , Extractos Vegetales/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Brasil , Fitoterapia , Extractos Vegetales/farmacología , Hojas de la Planta/química
11.
Exp Parasitol ; 174: 1-9, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28126391

RESUMEN

The development of novel drugs for the treatment of leishmaniases continues to be crucial to overcome the severe impacts of these diseases on human and animal health. Several bioactivities have been described in extracts from macroalgae belonging to the Cystoseira genus. However, none of the studies has reported the chemical compounds responsible for the antileishmanial activity observed upon incubation of the parasite with the aforementioned extracts. Thus, this work aimed to isolate and characterize the molecules present in a hexane extract of Cystoseira baccata that was found to be bioactive against Leishmania infantum in a previous screening effort. A bioactivity-guided fractionation of the C. baccata extract was carried out and the inhibitory potential of the isolated compounds was evaluated via the MTT assay against promastigotes and murine macrophages as well as direct counting against intracellular amastigotes. Moreover, the promastigote ultrastructure, DNA fragmentation and changes in the mitochondrial potential were assessed to unravel their mechanism of action. In this process, two antileishmanial meroditerpenoids, (3R)- and (3S)-tetraprenyltoluquinol (1a/1b) and (3R)- and (3S)-tetraprenyltoluquinone (2a/2b), were isolated. Compounds 1 and 2 inhibited the growth of the L. infantum promastigotes (IC50 = 44.9 ± 4.3 and 94.4 ± 10.1 µM, respectively), inducing cytoplasmic vacuolization and the presence of coiled multilamellar structures in mitochondria as well as an intense disruption of the mitochondrial membrane potential. Compound 1 decreased the intracellular infection index (IC50 = 25.0 ± 4.1 µM), while compound 2 eliminated 50% of the intracellular amastigotes at a concentration > 88.0 µM. This work identified compound 2 as a novel metabolite and compound 1 as a biochemical isolated from Cystoseira algae displaying antileishmanial activity. Compound 1 can thus be an interesting scaffold for the development of novel chemotherapeutic molecules for canine and human visceral leishmaniases studies. This work reinforces the evidence of the marine environment as source of novel molecules.


Asunto(s)
Antiprotozoarios/farmacología , Diterpenos/farmacología , Leishmania infantum/efectos de los fármacos , Phaeophyceae/química , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Biomasa , Fragmentación del ADN , ADN Protozoario/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Concentración 50 Inhibidora , Leishmania infantum/genética , Leishmania infantum/ultraestructura , Macrófagos Peritoneales/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Óxido Nítrico/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Portugal , Espectrofotometría/métodos
12.
Chem Biodivers ; 14(5)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28054741

RESUMEN

Bioactivity-guided fractionation of antileishmanial active extract from leaves of Casearia arborea led to isolation of three metabolites: tricin (1), 1',6'-di-O-ß-d-vanilloyl glucopyranoside (2) and vanillic acid (3). Compound 1 demonstrated the highest activity against the intracellular amastigotes of Leishmania infantum, with an IC50 value of 56 µm. Tricin (1) demonstrated selectivity in mammalian cells (SI > 7) and elicited immunomodulatory effect on host cells. The present work suggests that tricin modulated the respiratory burst of macrophages to a leishmanicidal state, contributing to the parasite elimination. Therefore, the natural compound tricin could be further explored in drug design studies for leishmaniasis treatment.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Casearia/química , Flavonoides/farmacología , Animales , Antiprotozoarios/farmacología , Flavonoides/aislamiento & purificación , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Leishmania infantum/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Salicaceae , Ácido Vanílico/aislamiento & purificación , Ácido Vanílico/farmacología
13.
Chem Res Toxicol ; 24(6): 887-95, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21510702

RESUMEN

In mammalian membranes, cholesterol is concentrated in lipid rafts. The generation of cholesterol hydroperoxides (ChOOHs) and their decomposition products induces various types of cell damage. The decomposition of some organic hydroperoxides into peroxyl radicals is known to be a potential source of singlet molecular oxygen [O(2) ((1)Δ(g))] in biological systems. We report herein on evidence of the generation of O(2) ((1)Δ(g)) from ChOOH isomers in solution or in liposomes containing ChOOHs, which involves a cyclic mechanism from a linear tetraoxide intermediate originally proposed by Russell. Characteristic light emission at 1270 nm, corresponding to O(2) ((1)Δ(g)) monomolecular decay, was observed for each ChOOH isomer or in liposomes containing ChOOHs. Moreover, the presence of O(2) ((1)Δ(g)) was unequivocally demonstrated using the direct spectral characterization of near-infrared light emission. Using (18)O-labeled cholesterol hydroperoxide (Ch(18)O(18)OH), we observed the formation of (18)O-labeled O(2) ((1)Δ(g)) [(18)O(2) ((1)Δ(g))] by the chemical trapping of (18)O(2) ((1)Δ(g)) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) and the (18)O-labeled products of the Russell mechanism using high-performance liquid chromatography coupled to tandem mass spectrometry. Photoemission properties and chemical trapping clearly demonstrate that the decomposition of Ch(18)O(18)OH generates (18)O(2) ((1)Δ(g)), which is consistent with the Russell mechanism and points to the involvement of O(2) ((1)Δ(g)) in cholesterol hydroperoxide-mediated cytotoxicity.


Asunto(s)
Colesterol/análogos & derivados , Oxígeno Singlete/química , Colesterol/química , Liposomas/química , Espectrometría de Masas , Isótopos de Oxígeno/análisis , Espectroscopía Infrarroja Corta
14.
Anal Chem ; 82(16): 6775-81, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20704366

RESUMEN

Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3beta-hydroxy-5beta-hydroxy-B-norcholestane-6beta-carboxyaldehyde (1a) and 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These aldehydes can be generated by ozone-, as well as by singlet molecular oxygen-mediated cholesterol oxidation. It has been suggested that 1b is preferentially formed by ozone and 1a is preferentially formed by singlet molecular oxygen. In this study we describe the use of 1-pyrenebutyric hydrazine (PBH) as a fluorescent probe for the detection of cholesterol aldehydes. The formation of the fluorescent adduct between 1a with PBH was confirmed by HPLC-MS/MS. The fluorescence spectra of PBH did not change upon binding to the aldehyde. Moreover, the derivatization was also effective in the absence of an acidified medium, which is critical to avoid the formation of cholesterol aldehydes through Hock cleavage of 5alpha-hydroperoxycholesterol. In conclusion, PBH can be used as an efficient fluorescent probe for the detection/quantification of cholesterol aldehydes in biological samples. Its analysis by HPLC coupled to a fluorescent detector provides a sensitive and specific way to quantify cholesterol aldehydes in the low femtomol range.


Asunto(s)
Aldehídos/análisis , Colesterol/análisis , Cromatografía Líquida de Alta Presión/métodos , Colorantes Fluorescentes/química , Ozono/química , Oxígeno Singlete/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Oxidación-Reducción
15.
Chem Res Toxicol ; 22(5): 875-84, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19358613

RESUMEN

A few years ago, it was reported that ozone is produced in human atherosclerotic arteries, on the basis of the identification of 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3beta-hydroxy-5beta-hydroxy-B-norcholestane-6beta-carboxaldehyde (ChAld) as their 2,4-dinitrophenylhydrazones. The formation of endogenous ozone was attributed to water oxidation catalyzed by antibodies, with the formation of dihydrogen trioxide as a key intermediate. We now report that ChAld is also generated by the reaction of cholesterol with singlet molecular oxygen [O2 (1Delta(g))] that is produced by photodynamic action or by the thermodecomposition of 1,4-dimethylnaphthalene endoperoxide, a defined pure chemical source of O2 (1Delta(g)). On the basis of 18O-labeled ChAld mass spectrometry, NMR, light emission measurements, and derivatization studies, we propose that the mechanism of ChAld generation involves the formation of the well-known cholesterol 5alpha-hydroperoxide (5alpha-OOH) (the major product of O2 ((1)Delta(g))-oxidation of cholesterol) and/or a 1,2-dioxetane intermediate formed by O2 (1Delta(g)) attack at the Delta(5) position. The Hock cleavage of 5alpha-OOH (the major pathway) or unstable cholesterol dioxetane decomposition (a minor pathway, traces) gives a 5,6-secosterol intermediate, which undergoes intramolecular aldolization to yield ChAld. These results show clearly and unequivocally that ChAld is generated upon the reaction of cholesterol with O2 (1Delta(g)) and raises questions about the role of ozone in biological processes.


Asunto(s)
Colesterol/metabolismo , Ozono/metabolismo , Oxígeno Singlete/metabolismo , Colesterol/análogos & derivados , Colesterol/química , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ozono/química , Oxígeno Singlete/química , Esteroles/química , Esteroles/metabolismo
16.
IUBMB Life ; 59(4-5): 322-31, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17505972

RESUMEN

The decomposition of lipid hydroperoxides (LOOH) into peroxyl radicals is a potential source of singlet molecular oxygen ((1)O(2)) in biological systems. Recently, we have clearly demonstrated the generation of (1)O(2) in the reaction of lipid hydroperoxides with biologically important oxidants such as metal ions, peroxynitrite and hypochlorous acid. The approach used to unequivocally demonstrate the generation of (1)O(2) in these reactions was the use of an isotopic labeled hydroperoxide, the (18)O-labeled linoleic acid hydroperoxide, the detection of labeled compounds by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) and the direct spectroscopic detection and characterization of (1)O(2) light emission. Using this approach we have observed the formation of (18)O-labeled (1)O(2) by chemical trapping of (1)O(2) with anthracene derivatives and detection of the corresponding labeled endoperoxide by HPLC-MS/MS. The generation of (1)O(2) was also demonstrated by direct spectral characterization of (1)O(2) monomol light emission in the near-infrared region (lambda = 1270 nm). In summary, our studies demonstrated that LOOH can originate (1)O(2). The experimental evidences indicate that (1)O(2) is generated at a yield close to 10% by the Russell mechanism, where a linear tetraoxide intermediate is formed in the combination of two peroxyl radicals. In addition to LOOH, other biological hydroperoxides, including hydroperoxides formed in proteins and nucleic acids, may also participate in reactions leading to the generation (1)O(2). This hypothesis is currently being investigated in our laboratory.


Asunto(s)
Peróxidos Lipídicos/química , Oxidantes/química , Oxígeno Singlete/química , Membrana Celular/química , ADN/química , Peróxido de Hidrógeno/química , Estructura Molecular , Proteínas/química
17.
J Phys Chem A ; 110(36): 10545-51, 2006 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-16956235

RESUMEN

In this work, the interaction between fisetin (3,3',4',7-tetrahydroxyflavone) (Fis) and cyclodextrins (CDs) (alpha and beta) was studied through UV-vis absorption, steady-state fluorescence, induced circular dichroism, and (1)H NMR experiments with dependence on temperature and pH. Some experimental data were compared with quantum-mechanics studies based on the SAM1 (AMPAC) semiempirical model, as well as with the B3LYP and MPW1PW91 functional models from density functional theory using the 6-311G and 3-21G basis sets. The spectroscopic measurements show that Fis does not form stable complexes with alpha-CD. On the other hand, at pH 4.0 and 6.5, the complex Fis-beta-CD is formed in a Fis:beta-CD 1:1 stoichiometry and an equilibrium constant (K) of 900 +/- 100 M(-1). In basic medium (pH 11.5), K decreases to 240 +/- 90 M(-1) because Fis deprotonation leads to its better solubilization in water. Molecular modeling points out that Fis is not totally inserted into the inner cavity of beta-CD. The formation of the inclusion complex renders an environment that enhances intramolecular excited state proton transfer. The inclusion complex is formed preferentially via entry of the Fis phenyl group into beta-CD.


Asunto(s)
Ciclodextrinas/química , Flavonoides/química , Flavonoles , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Estructura Molecular , Sensibilidad y Especificidad , Solubilidad , Termodinámica
18.
Inorg Chem ; 43(11): 3521-7, 2004 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-15154817

RESUMEN

Two novel ruthenium polypyridine complexes, [Ru(bpy)(2)Cl(BPEB)](PF(6)) and ([Ru(bpy)(2)Cl](2)(BPEB))(PF(6))(2) (BPEB = trans-1,4-bis[2-(4-pyridyl)ethenyl]benzene), were synthesized and their characterization carried out by means of elemental analysis, UV-visible spectroscopy, positive ion electrospray (ESI-MS), and tandem mass (ESI-MS/MS) spectrometry, as well as by NMR spectroscopy and cyclic voltammetry. Cyclic and differential pulse voltammetry for the mononuclear complex showed three set of waves around 1.2 V (Ru(2+/3+)), -1.0 V (BPEB(0/)(-)), and -1.15 (BPEB(-/2-)). This complex exhibited aggregation phenomena in aqueous solution, involving pi-pi stacking of the planar, hydrophobic BPEB ligands. According to NMR measurements and variable-temperature experiments, the addition of beta-cyclodextrin (betaCD) to [Ru(bpy)(2)Cl(BPEB)](+) leads to an inclusion complex, breaking down the aggregated array.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/síntesis química , Ciclodextrinas/química , Compuestos Organometálicos/síntesis química , Rutenio/química , beta-Ciclodextrinas , Ciclodextrinas/síntesis química , Óxido de Deuterio , Electroquímica , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...