Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
2.
Endocrinology ; 153(11): 5261-74, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22948222

RESUMEN

The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase ß. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase ß phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.


Asunto(s)
Resistencia a la Insulina/fisiología , Obesidad/metabolismo , ARN Bicatenario/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Glucemia/genética , Glucemia/metabolismo , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/genética , Consumo de Oxígeno/fisiología , Ácido Palmítico/farmacología , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Bicatenario/genética , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-22909188

RESUMEN

Selected commercial processed foods available in the Brazilian market (306 samples) were analysed for furan content using a validated gas chromatography-mass spectrometry method preceded by headspace solid phase micro-extraction (HS-SPME-GC/MS). Canned and jarred foods, including vegetable, meat, fruit and sweet products, showed levels up to 32.8 µg kg⁻¹, with the highest concentrations observed in vegetables and meats. For coffee, furan content ranged from 253.0 to 5021.4 µg kg⁻¹ in the roasted ground coffee and from not detected to 156.6 µg kg⁻¹ in the beverage. For sauces, levels up to 138.1 µg kg⁻¹ were found. In cereal-based products, the highest concentrations (up to 191.3 µg kg⁻¹) were observed in breakfast cereal (corn flakes), cracker (cream crackers) and biscuit (wafer). In general, these results are comparable with those reported in other countries and will be useful for a preliminary estimate of the furan dietary intake in Brazil.


Asunto(s)
Carcinógenos/análisis , Café/química , Contaminación de Alimentos , Alimentos en Conserva/análisis , Furanos/análisis , Animales , Brasil , Condimentos/análisis , Grano Comestible/química , Manipulación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Carne/análisis , Reproducibilidad de los Resultados , Microextracción en Fase Sólida , Verduras/química
4.
Diabetologia ; 49(10): 2449-52, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16955211

RESUMEN

AIMS/HYPOTHESIS: Ghrelin is a peptide that is mainly produced by the stomach and stimulates food intake, adiposity and weight gain. Previous studies have documented that plasma levels of ghrelin are reduced by insulin, but the mechanisms that mediate this effect are unclear. METHODS: To determine whether phosphatidylinositol 3-kinase (PI(3)K) and/or mitogen-activated protein kinase (MAPK) are involved in this insulin action, we tested the intracerebroventricular (i.c.v.) effect of specific inhibitors of PI(3)K (LY294002 and wortmannin) and MAPK (PD98059 and UO126) on the insulin-mediated reduction of ghrelin levels in rats. RESULTS: Intracerebroventricular treatment with insulin reduced ghrelin levels. Inhibition of PI(3)K specifically blocked the insulin-induced reduction in ghrelin concentration, whereas inhibition of MAPK had no effect on insulin-mediated actions. Moreover, pretreatment with i.c.v. PI(3)K inhibitors blocked the reduction of ghrelin levels after OGTT-induced hyperglycaemia and hyperinsulinaemia. CONCLUSIONS/INTERPRETATION: These data demonstrate that changes in insulin action in the central nervous system regulate circulating ghrelin levels and that PI(3)K is a specific mediator of this action.


Asunto(s)
Insulina/administración & dosificación , Insulina/farmacología , Hormonas Peptídicas/sangre , Animales , Privación de Alimentos , Ghrelina , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Inyecciones Intraventriculares , Cinética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hormonas Peptídicas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas
5.
Diabetologia ; 48(3): 506-18, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15692808

RESUMEN

AIM/HYPOTHESIS: Several epidemiological studies have suggested an association between chronic hyperinsulinaemia and insulin resistance. However, the causality of this relationship remains uncertain. METHODS: We performed chronic hyperinsulinaemic-euglycaemic clamps and delineated, by western blotting, an IR/IRSs/phosphatidylinositol 3-kinase(PI[3]K)/Akt pathway in insulin-responsive tissues of hyperinsulinaemic rats. IRS-1/2 serine phosphorylation, IR/protein tyrosine phosphatase 1B (PTP1B) association, and mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70 S6K) activity were also evaluated in the liver, skeletal muscle and white adipose tissue of hyperinsulinaemic animals. RESULTS: We found that chronic hyperinsulinaemic rats have insulin resistance and reduced levels of glycogen content in liver and muscle. In addition, we demonstrated an impairment of the insulin-induced IR/IRSs/PI3K/Akt pathway in liver and muscle of chronic hyperinsulinaemic rats that parallels increases in IRS1/2 serine phosphorylation, IR/PTP1B association and mTOR activity. Despite a higher association of IR/PTP1B, there was an increase in white adipose tissue of chronic hyperinsulinaemic rats in IRS-1/2 protein levels, tyrosine phosphorylation and IRSs/PI3K association, which led to an increase in basal Akt serine phosphorylation. No increases in IRS-1/2 serine phosphorylation and mTOR activity were observed in white adipose tissue. Rapamycin reversed the insulin resistance and the changes induced by hyperinsulinaemia in the three tissues studied. CONCLUSIONS/INTERPRETATION: Our data provide evidence that chronic hyperinsulinaemia itself, imposed on normal rats, appears to have a dual effect, stimulating insulin signalling in white adipose tissue, whilst decreasing it in liver and muscle. The underlying mechanism of these differential effects may be related to the ability of hyperinsulinaemia to increase mTOR/p70 S6K pathway activity and IRS-1/2 serine phosphorylation in a tissue-specific fashion. In addition, we demonstrated that inhibition of the mTOR pathway with rapamycin can prevent insulin resistance caused by chronic hyperinsulinaemia in liver and muscle. These findings support the hypothesis that defective and tissue-selective insulin action contributes to the insulin resistance observed in hyperinsulinaemic states.


Asunto(s)
Insulina/fisiología , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Tejido Adiposo/anatomía & histología , Animales , Peso Corporal , Ingestión de Energía , Epidídimo , Técnica de Clampeo de la Glucosa , Glucólisis , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Fosforilación , Fosfoserina/metabolismo , Ratas , Ratas Wistar , Serina-Treonina Quinasas TOR
6.
Horm Metab Res ; 35(5): 282-9, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12915997

RESUMEN

During pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats.


Asunto(s)
Animales Recién Nacidos/fisiología , Insulina/fisiología , Islotes Pancreáticos/metabolismo , Prolactina/fisiología , Proteínas Proto-Oncogénicas , Transducción de Señal/fisiología , Animales , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/enzimología , Janus Quinasa 2 , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Ratas , Receptor Cross-Talk/fisiología , Tirosina/metabolismo
7.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;34(9): 1155-1160, Sept. 2001. tab
Artículo en Inglés | LILACS | ID: lil-290401

RESUMEN

Rats fed a high-fructose diet represent an animal model for insulin resistance and hypertension. We recently showed that a high-fructose diet containing vegetable oil but a normal sodium/potassium ratio induced mild insulin resistance with decreased insulin receptor substrate-1 tyrosine phosphorylation in the liver and muscle of normal rats. In the present study, we examined the mean blood pressure, serum lipid levels and insulin sensitivity by estimating in vivo insulin activity using the 15-min intravenous insulin tolerance test (ITT, 0.5 ml of 6 æg insulin, iv) followed by calculation of the rate constant for plasma glucose disappearance (Kitt) in male Wistar-Hannover rats (110-130 g) randomly divided into four diet groups: control, 1:3 sodium/potassium ratio (R Na:K) diet (C 1:3 R Na:K); control, 1:1 sodium/potassium ratio diet (CNa 1:1 R Na:K); high-fructose, 1:3 sodium/potassium ratio diet (F 1:3 R Na:K), and high-fructose, 1:1 sodium/potassium ratio diet (FNa 1:1 R Na:K) for 28 days. The change in R Na:K for the control and high-fructose diets had no effect on insulin sensitivity measured by ITT. In contrast, the 1:1 R Na:K increased blood pressure in rats receiving the control and high-fructose diets from 117 + or - 3 and 118 + or - 3 mmHg to 141 + or - 4 and 132 + or - 4 mmHg (P<0.05), respectively. Triacylglycerol levels were higher in both groups treated with a high-fructose diet when compared to controls (C 1:3 R Na:K: 1.2 + or - 0.1 mmol/l vs F 1:3 R Na:K: 2.3 + or - 0.4 mmol/l and CNa 1:1 R Na:K: 1.2 + or - 0.2 mmol/l vs FNa 1:1 R Na:K: 2.6 + or - 0.4 mmol/l, P<0.05). These data suggest that fructose alone does not induce hyperinsulinemia or hypertension in rats fed a normal R Na:K diet, whereas an elevation of sodium in the diet may contribute to the elevated blood pressure in this animal model


Asunto(s)
Animales , Masculino , Ratas , Presión Sanguínea , Dieta , Fructosa/fisiología , Resistencia a la Insulina , Glucemia/análisis , Hiperinsulinismo/etiología , Hipertensión/etiología , Hipertrigliceridemia/etiología , Lípidos/sangre , Potasio/administración & dosificación , Ratas Wistar , Sodio/administración & dosificación
8.
Braz J Med Biol Res ; 34(9): 1155-60, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11514839

RESUMEN

Rats fed a high-fructose diet represent an animal model for insulin resistance and hypertension. We recently showed that a high-fructose diet containing vegetable oil but a normal sodium/potassium ratio induced mild insulin resistance with decreased insulin receptor substrate-1 tyrosine phosphorylation in the liver and muscle of normal rats. In the present study, we examined the mean blood pressure, serum lipid levels and insulin sensitivity by estimating in vivo insulin activity using the 15-min intravenous insulin tolerance test (ITT, 0.5 ml of 6 microg insulin, iv) followed by calculation of the rate constant for plasma glucose disappearance (Kitt) in male Wistar-Hannover rats (110-130 g) randomly divided into four diet groups: control, 1:3 sodium/potassium ratio (R Na:K) diet (C 1:3 R Na:K); control, 1:1 sodium/potassium ratio diet (CNa 1:1 R Na:K); high-fructose, 1:3 sodium/potassium ratio diet (F 1:3 R Na:K), and high-fructose, 1:1 sodium/potassium ratio diet (FNa 1:1 R Na:K) for 28 days. The change in R Na:K for the control and high-fructose diets had no effect on insulin sensitivity measured by ITT. In contrast, the 1:1 R Na:K increased blood pressure in rats receiving the control and high-fructose diets from 117 +/- 3 and 118 +/- 3 mmHg to 141 +/- 4 and 132 +/- 4 mmHg (P < 0.05), respectively. Triacylglycerol levels were higher in both groups treated with a high-fructose diet when compared to controls (C 1:3 R Na:K: 1.2 +/- 0.1 mmol/l vs F 1:3 R Na:K: 2.3 +/- 0.4 mmol/l and CNa 1:1 R Na:K: 1.2 +/- 0.2 mmol/l vs FNa 1:1 R Na:K: 2.6 +/- 0.4 mmol/l, P < 0.05). These data suggest that fructose alone does not induce hyperinsulinemia or hypertension in rats fed a normal R Na:K diet, whereas an elevation of sodium in the diet may contribute to the elevated blood pressure in this animal model.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Dieta , Fructosa/farmacología , Síndrome Metabólico , Animales , Glucemia/análisis , Fructosa/administración & dosificación , Hiperinsulinismo/etiología , Hipertensión/etiología , Hipertrigliceridemia/etiología , Lípidos/sangre , Masculino , Potasio/administración & dosificación , Ratas , Ratas Wistar , Sodio en la Dieta/administración & dosificación
9.
Braz J Med Biol Res ; 33(12): 1421-7, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11105093

RESUMEN

Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-(1/2)) in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days) induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05). There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 +/- 4% (P<0.05) in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-(1/2)) phosphorylation, to 83 +/- 5% (P<0.05) in liver and to 77 +/- 4% (P<0.05) in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.


Asunto(s)
Fructosa/efectos adversos , Resistencia a la Insulina , Hígado/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Fosfoproteínas/metabolismo , Animales , Modelos Animales de Enfermedad , Fructosa/administración & dosificación , Intolerancia a la Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fosforilación , Ratas , Ratas Wistar
10.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;33(12): 1421-7, Dec. 2000. graf
Artículo en Inglés | LILACS | ID: lil-274896

RESUMEN

Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2) in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days) induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05). There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 + or - 4 percent (P<0.05) in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2) phosphorylation, to 83 + or - 5 percent (P<0.05) in liver and to 77 + or - 4 percent (P<0.05) in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding


Asunto(s)
Animales , Ratas , Masculino , Fructosa/efectos adversos , Hígado/efectos de los fármacos , Músculos/efectos de los fármacos , Receptor de Insulina/análisis , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina , Fosforilación , Ratas Wistar
11.
J Nutr ; 130(6): 1531-5, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10827205

RESUMEN

A high fructose diet induces insulin resistance in rats, although the exact molecular mechanism involved is unknown. In this study, we used immunoprecipitation and immunoblotting to examine the levels and phosphorylation status of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), as well as the association of the IRS-1 with phosphatidylinositol 3-kinase (PI 3-kinase), and phosphotyrosine phosphatase (SHP2) in the liver and muscle of rats fed a control or high fructose diet for 28 d. There were no differences in IR and the IRS-1 protein levels in the liver and muscle of rats fed the control and high fructose diets. However, tyrosine-phosphorylation of the insulin receptor after insulin stimulation was reduced to 71 +/- 2% (P < 0.05) of control in the liver of the fructose-fed rats. In samples previously immunoprecipitated with anti-IRS-1 antibody and blotted with antiphosphotyrosine antibody, the insulin-stimulated IRS-1 phosphorylation levels in the liver and muscle of the fructose-fed group were only 70 +/- 6% (P < 0.05) and 76 +/- 5% (P < 0.05) of those of control rats, respectively. The insulin-stimulated IRS-1 association with PI 3-kinase was reduced to 84 +/- 3% (P < 0.05) in the liver and to 84 +/- 4% (P < 0.05) in the muscle of the fructose-fed group compared with control rats. Insulin-stimulated IRS-1 association with SHP2 was reduced to 79 +/- 5% (P < 0.05) in liver of the fructose-fed rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance observed in these rats.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Fructosa/farmacología , Insulina/metabolismo , Hígado/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Receptor de Insulina/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Carbohidratos de la Dieta/administración & dosificación , Fructosa/administración & dosificación , Proteínas Sustrato del Receptor de Insulina , Hígado/enzimología , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Ratas Wistar , Receptor de Insulina/metabolismo
12.
13.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA