Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555362

RESUMEN

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tilacoides/metabolismo , Protones , Antiportadores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotosíntesis/fisiología , Cloroplastos/metabolismo , Luz
3.
Plant Physiol ; 187(4): 2209-2229, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742682

RESUMEN

During photosynthesis, energy is transiently stored as an electrochemical proton gradient across the thylakoid membrane. The resulting proton motive force (pmf) is composed of a membrane potential (ΔΨ) and a proton concentration gradient (ΔpH) and powers the synthesis of ATP. Light energy availability for photosynthesis can change very rapidly and frequently in nature. Thylakoid ion transport proteins buffer the effects that light fluctuations have on photosynthesis by adjusting pmf and its composition. Ion channel activities dissipate ΔΨ, thereby reducing charge recombinations within photosystem II. The dissipation of ΔΨ allows for increased accumulation of protons in the thylakoid lumen, generating the signal that activates feedback downregulation of photosynthesis. Proton export from the lumen via the thylakoid K+ exchange antiporter 3 (KEA3), instead, decreases the ΔpH fraction of the pmf and thereby reduces the regulatory feedback signal. Here, we reveal that the Arabidopsis (Arabidopsis thaliana) KEA3 protein homo-dimerizes via its C-terminal domain. This C-terminus has a regulatory function, which responds to light intensity transients. Plants carrying a C-terminus-less KEA3 variant show reduced feed-back downregulation of photosynthesis and suffer from increased photosystem damage under long-term high light stress. However, during photosynthetic induction in high light, KEA3 deregulation leads to an increase in carbon fixation rates. Together, the data reveal a trade-off between long-term photoprotection and a short-term boost in carbon fixation rates, which is under the control of the KEA3 C-terminus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Tilacoides/metabolismo
4.
Plant Physiol ; 182(4): 2126-2142, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32041909

RESUMEN

The composition of the thylakoid proton motive force (pmf) is regulated by thylakoid ion transport. Passive ion channels in the thylakoid membrane dissipate the membrane potential (Δψ) component to allow for a higher fraction of pmf stored as a proton concentration gradient (ΔpH). K+/H+ antiport across the thylakoid membrane via K+ EXCHANGE ANTIPORTER3 (KEA3) instead reduces the ΔpH fraction of the pmf. Thereby, KEA3 decreases nonphotochemical quenching (NPQ), thus allowing for higher light use efficiency, which is particularly important during transitions from high to low light. Here, we show that in the background of the Arabidopsis (Arabidopsis thaliana) chloroplast (cp)ATP synthase assembly mutant cgl160, with decreased cpATP synthase activity and increased pmf amplitude, KEA3 plays an important role for photosynthesis and plant growth under steady-state conditions. By comparing cgl160 single with cgl160 kea3 double mutants, we demonstrate that in the cgl160 background loss of KEA3 causes a strong growth penalty. This is due to a reduced photosynthetic capacity of cgl160 kea3 mutants, as these plants have a lower lumenal pH than cgl160 mutants, and thus show substantially increased pH-dependent NPQ and decreased electron transport through the cytochrome b 6 f complex. Overexpression of KEA3 in the cgl160 background reduces pH-dependent NPQ and increases photosystem II efficiency. Taken together, our data provide evidence that under conditions where cpATP synthase activity is low, a KEA3-dependent reduction of ΔpH benefits photosynthesis and growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón de Cloroplastos/genética , Concentración de Iones de Hidrógeno , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...