Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 8(5): 957-964, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38774358

RESUMEN

With its large size, dense atmosphere, methane-based hydrological-like cycle, and diverse surface features, the Saturnian moon Titan is one of the most unique of the outer Solar System satellites. Study of the photochemically produced molecules in Titan's atmosphere is critical in order to understand the mechanics of the atmosphere and, by extension, the interactions between atmosphere, surface, and subsurface water ocean. One example is propyne vapor, a photochemically produced species in Titan's upper atmosphere expected to condense in Titan's stratosphere at lower altitudes. Propyne may also be a trace species in Titan's stratospheric co-condensed ice clouds detected by the Cassini Composite InfraRed Spectrometer. Bulk structural characterization of propyne ice is currently incomplete and is lacking in published laboratory Raman spectra and X-ray diffraction data. Here, we present a laboratory characterization of propyne ice, including the first published X-ray diffraction and Raman spectroscopy results for propyne ice.

2.
Astrobiology ; 20(5): 658-669, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32159384

RESUMEN

Atmospheric organic hazes are common in planetary bodies in our solar system and likely exoplanet atmospheres as well. In addition, geochemical data support the existence of an organic haze in the early Earth's atmosphere. Much of what is known about organic haze formation derives from studies of Saturn's moon Titan. It is believed that on Titan ions play an important role in haze formation. It is possible, by using Titan as an analog for the Archean Earth, to consider that an Archean haze could have formed by similar processes. Here, we examine the anion chemistry that occurs during laboratory simulations of early Earth haze formation and measure the composition of gaseous anions as a function of O2 mixing ratio. Gaseous anion composition and relative abundances are measured by an atmospheric pressure interface time-of-flight mass spectrometer and are compared to previous photochemical haze mass loading measurements. Numerous anions are observed spanning from mass-to-charge ratio 26 to 246, with a majority of the identified anions containing carbon, hydrogen, nitrogen, and/or oxygen. A shift in the anion composition occurs with increasing the precursor O2 mixing ratio. With 0-20 ppmv O2 in CH4/CO2/N2 mixtures, ions contain mostly organic nitrogen, with CNO- being the most intense ion peak. As the precursor O2 is increased to 200 and 2000 ppmv, inorganic nitrogen ions become the dominant chemical group, with NO3- having the most intense ion signal. The clear shift in the ionic composition could be indicative of a modification to the gas-phase chemistry that occurs in the transition from an anoxic atmosphere to an oxygen-containing atmosphere, with potential astrobiological significance.


Asunto(s)
Atmósfera/química , Planeta Tierra , Oxígeno/química , Aniones , Espectrometría de Masas
3.
Anal Chem ; 86(7): 3517-24, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24611464

RESUMEN

We demonstrate the ability to visualize nanoparticle dissolution while simultaneously providing chemical signatures that differentiate between citrate-capped silver nanoparticles (AgNPs), AgNPs forced into dissolution via exposure to UV radiation, silver nitrate (AgNO3), and AgNO3/citrate deposited from aqueous solutions and suspensions. We utilize recently developed inkjet printing (IJP) protocols to deposit the different solutions/suspensions as NP aggregates and soluble species, which separate onto surfaces in situ, and collect mass spectral imaging data via time-of-flight secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag(+) chemical images provide the ability to distinguish between the different Ag-containing starting materials and, when coupled with mass spectral peak ratios, provide information-rich data sets for quick and reproducible visualization of NP-based aqueous constituents. When compared to other measurements aimed at studying NP dissolution, the IJP-TOF-SIMS approach offers valuable information that can potentially help in understanding the complex equilibria in NP-containing solutions and suspensions, including NP dissolution kinetics and extent of overall dissolution.

4.
J Environ Monit ; 14(7): 1914-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706074

RESUMEN

Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.


Asunto(s)
Modelos Moleculares , Nanopartículas/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA