Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 11: 1106349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025548

RESUMEN

We report the synthesis and characterization of a group of benzoylhydrazones (Ln) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing distinct para substituents (R = H, Cl, F, CH3, OCH3, OH and NH2, for L1-7, respectively; in L8 isonicotinohydrazide was used instead of benzylhydrazide). Cu(II) complexes were prepared by reaction of each benzoylhydrazone with Cu(II) acetate. All compounds were characterized by elemental analysis and mass spectrometry as well as by FTIR, UV-visible absorption, NMR or electron paramagnetic resonance spectroscopies. Complexes isolated in the solid state (1-8) are either formulated as [Cu(HL)acetate] (with L1 and L4) or as [Cu(Ln)]3 (n = 2, 3, 5, 6, 7 and 8). Single crystal X-ray diffraction studies were done for L5 and [Cu(L5)]3, confirming the trinuclear formulation of several complexes. Proton dissociation constants, lipophilicity and solubility were determined for all free ligands by UV-Vis spectrophotometry in 30% (v/v) DMSO/H2O. Formation constants were determined for [Cu(LH)], [Cu(L)] and [Cu(LH-1)] for L = L1, L5 and L6, and also [Cu(LH-2)] for L = L6, and binding modes are proposed, [Cu(L)] predominating at physiological pH. The redox properties of complexes formed with L1, L5 and L6 are investigated by cyclic voltammetry; the formal redox potentials fall in the range of +377 to +395 mV vs. NHE. The binding of the Cu(II)-complexes to bovine serum albumin was evaluated by fluorescence spectroscopy, showing moderate-to-strong interaction and suggesting formation of a ground state complex. The interaction of L1, L3, L5 and L7, and of the corresponding complexes with calf thymus DNA was evaluated by thermal denaturation. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. The complexes show higher activity than the corresponding free ligand, and most complexes are more active than cisplatin. Compounds 1, 3, 5, and 8 were selected for additional studies: while these complexes induce reactive oxygen species and double-strand breaks in both cancer cells, their ability to induce cell-death by apoptosis varies. Within the set of compounds tested, 8 emerges as the most promising one, presenting low IC50 values, and high induction of oxidative stress and DNA damage, which eventually lead to high rates of apoptosis.

2.
J Inorg Biochem ; 235: 111932, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35940023

RESUMEN

We report the synthesis and characterization of a family of benzohydrazones (Ln, n = 1-6) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing different substituents in the para position. Their oxidovanadium(IV) complexes were prepared and compounds with 1:1 and 1:2 metal-to-ligand stoichiometry were obtained. All compounds were characterized by elemental analyses and mass spectrometry as well as FTIR, UV-visible absorption, NMR (ligand precursors) and EPR (complexes) spectroscopies, and by DFT computational methods. Proton dissociation constants, lipophilicity and solubility in aqueous media were determined for all ligand precursors. Complex formation with V(IV)O was evaluated by spectrophotometry for L4 (Me-substituted) and L6 (OH-substituted) and formation constants for mono [VO(HL)]+, [VO(L)] and bis [VO(HL)2], [VO(HL)(L)]-, [VO(L)2]2- complexes were determined. EPR spectroscopy indicates the formation of [VO(HL)]+ and [VO(HL)2], with this latter being the major species at the physiological pH. Noteworthy, the EPR data suggest a different behaviour for L4 and L6, which confirm the results obtained in the solid state. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. All complexes show much higher activity on A-375 (IC50 < 6.3 µM) than in A-549 cells (IC50 > 20 µM). Complex 3 (F-substituted) shows the lowest IC50 on both cell lines and lower than cisplatin (in A-375). Studies identified this compound as the one showing the highest increase in Annexin-V staining, caspase activity and induction of double stranded breaks, corroborating the cytotoxicity results. The mechanism of action of the complexes involves reactive oxygen species (ROS) induced DNA damage, and cell death by apoptosis.


Asunto(s)
Complejos de Coordinación , Hidrazonas , Cisplatino , Complejos de Coordinación/química , Hidrazonas/química , Hidrazonas/farmacología , Ligandos , Oxiquinolina/farmacología , Vanadio/química
3.
J Inorg Biochem ; 234: 111876, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35691265

RESUMEN

The interaction between cytochrome c (Cyt) and potential vanadium drugs, formed by 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (dhp) and maltolate (ma), was studied by ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Since under physiological conditions redox processes are possible, the binding of the complexes in the oxidation state +IV and +V, [VIVO(dhp)2], [VIVO(ma)2], [VVO2(dhp)2]- and [VVO2(ma)2]-, was examined. In all systems VIV,V-L-Cyt adducts are observed, their formation depending on V oxidation state, ligand L and metal concentration. The larger stability of vanadium(IV) than vanadium(V) complexes favors the interaction of the moieties VIVOL2 and VIVOL+ with VIV, while with VV adducts with VVO2L and VVO2+ fragments are observed. The analysis of the protein structure suggests that Glu4, Glu21, Asp50, Glu62, Glu66 and Glu104 are the most plausible candidates for monodentate coordination, while the couples (Asp2, Glu4), (Glu92, Asp93) and (His33, Glu104) for bidentate binding. The values of E1/2 for [VIVO(dhp)2] and [VIVO(ma)2], measured by cyclic voltammetry (CV), 0.53 V and 0.60 V vs. standard hydrogen electrode, indicate that the oxidation of VIV to VV is possible. The presence of a protein can alter the redox behavior and stabilize one of the states, VIV or VV. Overall, the data reinforce the conclusion that, for V drugs, the biotransformation is fundamental to explain their biological action and the analysis should not be limited to the ligand exchange and hydrolysis but also include the redox processes, and that a mixture of VIV and VV species, VIV,V-L-Protein and VIV,V-Protein, could be responsible of the pharmacological effects.


Asunto(s)
Citocromos c , Vanadio , Ligandos , Proteínas , Piridonas/química , Piridonas/farmacología , Pironas , Vanadio/química
4.
Inorg Chem ; 61(10): 4513-4532, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35213131

RESUMEN

The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(µ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, µ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.


Asunto(s)
Peróxido de Hidrógeno , Molibdeno , ADN/química , Ligandos , Molibdeno/química , Molibdeno/farmacología , Agua/química
5.
Dalton Trans ; 50(44): 16326-16335, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34734597

RESUMEN

The equilibria in the solution of three different oxidovanadium(IV) complexes, VO(dhp)2 (dhp = 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonato), VO(ma)2 (ma = maltolato) and VO(pic)2(H2O) (pic = picolinato), were examined in the temperature range of 120-352 K through a combination of instrumental (EPR spectroscopy) and computational techniques (DFT methods). The results revealed that a general equilibrium exists: VOL2 + H2O ⇄ cis-VOL2(H2O) ⇄ trans-VOL2(H2O), where cis and trans refer to the relative position of H2O and the oxido ligand. The equilibrium is more or less shifted to the right depending on the ligand, the temperature, the ionic strength and the coordinating properties of the solvent. With VO(dhp)2, only the square pyramidal species exists at 298 K in aqueous solution, while at 120 K the cis- and trans-VO(dhp)2(H2O) species are also present. The complex of maltol exists almost exclusively in the form cis-VO(ma)2(H2O) in aqueous solution at 298 K, while the trans species can be revealed only at higher temperatures, where the EPR linewidth significantly decreases. The equilibria involving 1-methylimidazole (MeIm), a model for the side chain His coordination, are also influenced by temperature, with its coordination being favored by decreasing the temperature. The implications of these results in the study of the (vanadium complex)-protein systems are discussed and the interaction with myoglobin (Mb) is examined as a representative example.

6.
Inorg Chem ; 60(24): 19098-19109, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34847328

RESUMEN

The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.


Asunto(s)
Ribonucleasa Pancreática
7.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681261

RESUMEN

The good chelating properties of hydroxypyrone (HPO) derivatives towards oxidovanadium(IV) cation, VIVO2+, constitute the precondition for the development of new insulin-mimetic and anticancer compounds. In the present work, we examined the VIVO2+ complex formation equilibria of two kojic acid (KA) derivatives, L4 and L9, structurally constituted by two kojic acid units linked in position 6 through methylene diamine and diethyl-ethylenediamine, respectively. These chemical systems have been characterized in solution by the combined use of various complementary techniques, as UV-vis spectrophotometry, potentiometry, NMR and EPR spectroscopy, ESI-MS spectrometry, and DFT calculations. The thermodynamic approach allowed proposing a chemical coordination model and the calculation of the complex formation constants. Both ligands L4 and L9 form 1:1 binuclear complexes at acidic and physiological pHs, with various protonation degrees in which two KA units coordinate each VIVO2+ ion. The joined use of different techniques allowed reaching a coherent vision of the complexation models of the two ligands toward oxidovanadium(IV) ion in aqueous solution. The high stability of the formed species and the binuclear structure may favor their biological action, and represent a good starting point toward the design of new pharmacologically active vanadium species.

8.
J Inorg Biochem ; 224: 111566, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418714

RESUMEN

Casiopeinas® are among the few CuII compounds patented for their antitumor activity, but their mode of action has not been fully elucidated yet. One of them, Cas II-gly, is formed by 4,7-dimethyl-1,10-phenanthroline (Me2phen) and glycinato (Gly). In blood and cells, Cas II-gly can keep its identity or form mixed species with serum or cytosol bioligands (bL or cL) with composition CuII-Me2phen-bL/cL, CuII-Gly-bL/cL, or CuII-bL/cL. In this study, the binding of Cas II-gly with low molecular mass bioligands of blood serum (citric, L-lactic acid, and L-histidine) and cytosol (reduced glutathione (GSH), reduced nicotinamide adenine dinucleotide (NADH), adenosine triphosphate (ATP), and l-ascorbic acid) was examined through the application of instrumental (ElectroSpray Ionization-Mass Spectrometry and Electron Paramagnetic Resonance) and computational (Density Functional Theory) methods. The results indicated that mixed species CuII-Me2phen-bL/cL are formed, with the bioligands replacing glycinato. The formation of these adducts may participate in the copper transport toward the target organs and facilitate the cellular uptake or, in constrast, preclude it. In the systems with GSH, NADH and L-ascorbate, a redox reaction occurs with the partial oxidation of cL to the corresponding oxidized form (GSSG, NAD+ and dehydroascorbate) which interact with CuII. Formed CuI ion does not give complexation reactions with reduced or oxidized form of bioligands for its 'soft' character and low affinity for oxygen and nitrogen donors compared to CuII. However, CuI could promote Fenton-like reactions with production of reactive oxygen species (ROS) related to the antitumor activity of Casiopeinas®.


Asunto(s)
Antineoplásicos/metabolismo , Sangre/metabolismo , Cobre/metabolismo , Citosol/metabolismo , Compuestos Organometálicos/metabolismo , Ácido Ascórbico/metabolismo , Cobre/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón/métodos , Glutatión/metabolismo , Histidina/metabolismo , Humanos , Ligandos , NAD/metabolismo , Compuestos Organometálicos/química , Oxidación-Reducción , Fenantrolinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
9.
Inorg Chem ; 59(14): 9739-9755, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32585093

RESUMEN

In this study, the binding to lysozyme (Lyz) of four important VIV compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], [VIVO(dhp)2], and [VIVO(acac)2], where pic-, ma-, dhp-, and acac- are picolinate, maltolate, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, and acetylacetonate anions, and of the vanadium-containing natural product amavadin ([VIV(hidpa)2]2-, with hidpa3- N-hydroxyimino-2,2'-diisopropionate) was investigated by ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Moreover, the interaction of [VIVO(pic)2(H2O)], chosen as a representative VIVO2+ complex, was examined with two additional proteins, myoglobin (Mb) and ubiquitin (Ub), to compare the data. The examined vanadium concentration was in the range 15-150 µM, i.e., very close to that found under physiological conditions. With pic-, dhp-, and hidpa3-, the formation of adducts n[VIVOL2]-Lyz or n[VIVL2]-Lyz is favored, while with ma- and acac- the species n[VIVOL]-Lyz are detected, with n dependent on the experimental VIV/protein ratio. The behavior of the systems with [VIVO(pic)2(H2O)] and Mb or Ub is very similar to that of Lyz. The results suggested that under physiological conditions, the moiety cis-VIVOL2 (L = pic-, dhp-) is bound by only one accessible side-chain protein residue that can be Asp, Glu, or His, while VIVOL+ (L = ma-, acac-) can interact with the two equatorial and axial sites. If the VIV complex is thermodynamically stable and does not have available coordination positions, such as amavadin, the protein cannot interact with it through the formation of coordination bonds and, in such cases, noncovalent interactions are predicted. The formation of the adducts is dependent on the thermodynamic stability and geometry in aqueous solution of the VIVO2+ complex and affects the transport, uptake, and mechanism of action of potential V drugs.


Asunto(s)
Alanina/análogos & derivados , Antineoplásicos/química , Complejos de Coordinación/química , Ácidos Hidroxámicos/química , Hipoglucemiantes/química , Proteínas/química , Alanina/química , Animales , Bovinos , Pollos , Caballos , Muramidasa/química , Mioglobina/química , Espectrometría de Masa por Ionización de Electrospray , Ubiquitina/química , Vanadio/química
10.
Front Chem ; 8: 345, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457872

RESUMEN

Among vanadium compounds with potential medicinal applications, [VIVO(acac)2] is one of the most promising for its antidiabetic and anticancer activity. In the organism, however, interconversion of the oxidation state to +III and +V and binding to proteins are possible. In this report, the transformation of VIII(acac)3, VIVO(acac)2, and VVO2(acac) 2 - after the interaction with two model proteins, lysozyme (Lyz) and ubiquitin (Ub), was studied with ESI-MS (ElectroSpray Ionization-Mass Spectroscopy), EPR (Electron Paramagnetic Resonance), and computational (docking) techniques. It was shown that, in the metal concentration range close to that found in the organism (15-250 µM), VIII(acac)3 is oxidized to VIVO(acac)+ and VIVO(acac)2, which-in their turn-interact with proteins to give n[VIVO(acac)]-Protein and n[VIVO(acac)2]-Protein adducts. Similarly, the complex in the +IV oxidation state, VIVO(acac)2, dissociates to the mono-chelated species VIVO(acac)+ which binds to Lyz and Ub. Finally, VVO2(acac) 2 - undergoes complete dissociation to give the 'bare' VVO 2 + ion that forms adducts n[VVO2]-Protein with n = 1-3. Docking calculations allowed the prediction of the residues involved in the metal binding. The results suggest that only the VIVO complex of acetylacetonate survives in the presence of proteins and that its adducts could be the species responsible of the observed pharmacological activity, suggesting that in these systems VIVO2+ ion should be used in the design of potential vanadium drugs. If VIII or VVO2 potential active complexes had to be designed, the features of the organic ligand must be adequately modulated to obtain species with high redox and thermodynamic stability to prevent oxidation and dissociation.

11.
J Inorg Biochem ; 199: 110786, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377474

RESUMEN

A series of eight hexacoordinated mixed-ligand oxidovanadium(IV) complexes [VO(Lx)(LN-N)] (1-8), where Lx = L1 - L4 are four differently substituted ONO donor aroylhydrazone ligands and LN-N are N,N-donor bases like 2,2'-bipyridine (bipy) (1, 3, 5 and 7) and 1,10-phenanthroline (phen) (2, 4, 6 and 8), have been reported. All synthesized complexes have been characterized by various physicochemical techniques and molecular structures of 1 and 6 were determined by X-ray crystallography. With a view to evaluate the biological activity of the VIVO species, the behavior of the systems VIVO2+/Lx, VIVO2+/Lx/bipy and VIVO2+/Lx/phen was studied as a function of pH in a mixture of H2O/DMSO 50/50 (v/v). DFT calculations allowed finding out the relative stability of the tautomeric forms of the ligands, and predicting the structure of vanadium complexes and their EPR parameters. To study their interaction with proteins, firstly the ternary systems VIVO2+/L1,2 with 1-methylimidazole, which is a good model for histidine binding, were examined. Subsequently the interaction of the complexes with lysozyme (Lyz), cytochrome c (Cyt) and bovine serum albumin (BSA) was studied. The results indicate that the complexes showed moderate binding affinity towards BSA, while no interaction takes place with lysozyme and cytochrome c. This could be explained with the higher number of accessible coordinating and polar residues for BSA than for Lyz and Cyt. Further, the complexes were also evaluated for their DNA binding propensity through UV-vis absorption titration and fluorescence spectral studies. These results were consistent with BSA binding affinity and showed moderate binding affinity towards CT-DNA.


Asunto(s)
ADN/química , Hidrazonas/química , Compuestos Organometálicos/química , Vanadio/química , Citocromos c/química , Muramidasa/química , Unión Proteica , Albúmina Sérica Bovina/química
12.
Inorg Chem ; 58(12): 8064-8078, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31140794

RESUMEN

The interaction of VIVO2+ ion and five VIVOL2 compounds with potential pharmacological application, where L indicates maltolate (ma), kojate (koj), acetylacetonate (acac), 1,2-dimethyl-3-hydroxy-4(1 H)-pyridinonate (dhp), and l-mimosinate (mim), with ubiquitin (Ub) was studied by EPR, ESI-MS, and computational (docking and DFT) methods. The free metal ion VIVO2+ interacts with Glu, Asp, His, Thr, and Leu residues, but the most stable sites (named 1 and 2) involve the coordination of (Glu16, Glu18) and (Glu24, Asp52). In the system with VIVOL2 compounds, the type of binding depends on the vanadium concentration. When the concentration is in the mM range, the binding occurs with cis-VOL2(H2O), L = ma, koj, dhp, and mim, or with VO(acac)2: in the first case, the equatorial coordination of His68, Glu16, Glu18, or Asp21 residues yields species with formula n[VOL2]-Ub where n = 2-3, while with VO(acac)2 only noncovalent surface interactions are revealed. When the concentration of V is on the order of micromolar, the mono-chelated species VOL(H2O)2+ with L = ma, koj, acac, dhp, and mim, favored by the hydrolysis, interact with Ub, and adducts with composition n[VOL]-Ub ( n = 1-2) are observed with the contemporaneous coordination of (Glu18, Asp21) or (Glu16, Glu18), and (Glu24, Asp52) or (Glu51, Asp52) donors. The results of this work suggest that the combined application of spectroscopic, spectrometric, and computational techniques allow the complete characterization of the ternary systems formed by a V compound and a model protein such as ubiquitin. The same approach can be applied, eventually changing the spectroscopic/spectrometric techniques, to study the interaction of other metal species with other proteins.

13.
Inorg Chem ; 57(8): 4456-4469, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29613772

RESUMEN

The interaction of metallodrugs with proteins influences their transport, uptake, and mechanism of action. In this study, we present an integrative approach based on spectroscopic (EPR) and computational (docking) tools to elucidate the noncovalent binding modes of various VIVO compounds with lysozyme, a prototypical model of protein receptor. Five VIVO-flavonoid drug candidates formed by quercetin (que), morin (mor), 7,8-dihydroxyflavone (7,8-dhf), chrysin (chr), and 5-hydroxyflavone (5-hf)-effective against several osteosarcoma cell lines-and two benchmark VIVO species of acetylacetone (acac) and catechol (cat) are evaluated. The results show a gradual variation of the EPR spectra at room temperature, which is associated with the strength of the interaction between the square pyramidal complexes [VOL2] and the surface residues of lysozyme. The qualitative strength of the interaction from EPR is [VO(que)2]2- ≈ [VO(mor)2] > [VO(7,8-dhf)2]2- > [VO(chr)2] ≈ [VO(5-hf)2] > [VO(acac)2] ≈ [VO(cat)2]2-. This observation is compared with protein- ligand docking calculations with GOLD software examining the GoldScore scoring function ( F), for which hydrogen bond and van der Waals contact terms have been optimized to account for the surface interaction. The best predicted binding modes display an energy trend in good agreement with the EPR spectroscopy. Computation indicates that the strength of the interaction can be predicted by the Fmax value and depends on the number of OH or CO groups of the ligands that can interact with different sites on the protein surface and, more particularly, with those in the vicinity of the active site of the enzyme. The interaction strength determines the type of signal revealed ( rigid limit, slow tumbling, or isotropic) in the EPR spectra. Spectroscopic and computational results also suggest that there are several sites with comparable binding energy, with the V complexes distributing among them in a bound state and in aqueous solution in an unbound state. This kind of study and analysis could be generalized to determine the noncovalent binding modes of a generic metal species with a generic protein.


Asunto(s)
Complejos de Coordinación/metabolismo , Muramidasa/metabolismo , Vanadio/química , Sitios de Unión , Catecoles/química , Complejos de Coordinación/química , Espectroscopía de Resonancia por Spin del Electrón , Flavonoides/química , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Muramidasa/química , Pentanonas/química , Unión Proteica
14.
Dalton Trans ; 47(7): 2164-2182, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29327005

RESUMEN

Quinolone derivatives are among the most commonly prescribed antibacterials in the world and could also attract interest as organic ligands in the design of metal complexes with potential pharmacological activity. In this study, five compounds, belonging to the first (nalidixic acid or Hnal), second (ciprofloxacin or Hcip, and norfloxacin or Hnor) and third generation (levofloxacin or Hlev, and sparfloxacin or Hspar) of quinolones, were used as ligands to bind the VIVO2+ ion. In aqueous solution, mono- and bis-chelated species were formed as a function of pH, with cis-[VOHxL2(H2O)]x+ and [VOHxL2]x+, x = 0-2, being the major complexes at pH 7.4. DFT calculations indicate that the most stable isomers are the octahedral OC-6-32 and the square pyramidal SPY-5-12, in equilibrium with each other. To the best of our knowledge, this is the first case that an equilibrium between a penta-coordinated square pyramidal complex and a hexa-coordinated octahedral complex is observed in solution for ligands forming six-membered chelated rings. Nalidixic acid forms the solid compound [VO(nal)2(H2O)], to which a cis-octahedral geometry was assigned. The interaction with 1-methylimidazole (MeIm) causes a shift of the equilibrium SPY-5 + H2O ⇄ OC-6 toward the right after the formation of cis-[VOHxL2(MeIm)]x+, where MeIm replaces an equatorial water ligand. The study of the systems containing [VO(nal)2(H2O)] and the serum proteins - albumin (HSA), apo-transferrin (apo-hTf) and holo-transferrin (holo-hTf) - indicates that HSA and holo-hTf form the mixed species {VO(nal)2}y(HSA) and {VO(nal)2}y(holo-hTf), where y = 1-3 denotes the number of VO(nal)2 moieties bound to accessible histidines (His105, His367, His510 for HSA, and His25, His349, His606 for holo-hTf), whereas apo-hTf yields VO(nal)2(apo-hTf) with the coordination of the His289 residue only. Docking calculations suggest that the specific conformation of apo-hTf and the steric hindrance of the cis-VO(nal)2 moiety interfere with its interaction with all the surface His residues and the formation of a hydrogen bond network which could stabilize the binding sites.


Asunto(s)
Antibacterianos/química , Proteínas Sanguíneas/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Quinolonas/química , Vanadio/química , Proteínas Sanguíneas/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica
15.
Inorg Chem ; 56(21): 12938-12951, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-28985059

RESUMEN

This study presents an implementation of the protein-ligand docking program GOLD and a generalizable method to predict the binding site and orientation of potential vanadium drugs. Particularly, theoretical methods were applied to the study of the interaction of two VIVO complexes with antidiabetic activity, [VIVO(pic)2(H2O)] and [VIVO(ma)2(H2O)], where pic is picolinate and ma is maltolate, with lysozyme (Lyz) for which electron paramagnetic resonance spectroscopy suggests the binding of the moieties VO(pic)2 and VO(ma)2 through a carboxylate group of an amino acid residue (Asp or Glu). The work is divided in three parts: (1) the generation of a new series of parameters in GOLD program for vanadium compounds and the validation of the method on five X-ray structures of VIVO and VV species bound to proteins; (2) the prediction of the binding site and enantiomeric preference of [VO(pic)2(H2O)] to lysozyme, for which the X-ray diffraction analysis displays the interaction of a unique isomer (i.e., OC-6-23-Δ) through Asp52 residue, and the subsequent refinement of the results with quantum mechanics/molecular mechanics methods; (3) the application of the same approach to the interaction of [VO(ma)2(H2O)] with lysozyme. The results show that convenient implementation of protein-ligand docking programs allows for satisfactorily reproducing X-ray structures of metal complexes that interact with only one coordination site with proteins and predicting with blind procedures relevant low-energy binding modes. The results also demonstrate that the combination of docking methods with spectroscopic data could represent a new tool to predict (metal complex)-protein interactions and have a general applicability in this field, including for paramagnetic species.


Asunto(s)
Complejos de Coordinación/química , Muramidasa/química , Vanadio/química , Sitios de Unión , Modelos Químicos , Simulación del Acoplamiento Molecular , Estereoisomerismo
16.
Dalton Trans ; 46(28): 8950-8967, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28640312

RESUMEN

The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 µM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 µM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.


Asunto(s)
Antineoplásicos/sangre , Antineoplásicos/química , Compuestos Organometálicos/sangre , Compuestos Organometálicos/química , Ácido Cítrico/química , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/química , Modelos Moleculares , Conformación Molecular , Teoría Cuántica
17.
J Inorg Biochem ; 173: 52-65, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28499214

RESUMEN

In this work the speciation in real serum samples of five VIVO complexes with potential application in the therapy of diabetes was studied through EPR spectroscopy as a function of V concentration (45.4, 90.9 and 454.5µM) and time (0-180min). [VO(dhp)2], [VO(ma)2], [VO(acac)2], [VO(pic)2(H2O)], and [VO(mepic)2], where Hdhp indicates 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, Hma maltol, Hacac acetylacetone, Hpic picolinic acid, and Hmepic 6-methylpicolinic acid, were examined. The distribution of VIVO2+ among the serum bioligands was calculated from the thermodynamic stability constants in the literature and compared with the experimental results. EPR results, which confirm the prediction, depend on the strength of the ligand L and geometry assumed by the bis-chelated species at physiological pH, cis-octahedral or square pyramidal. With dhp, the strongest chelator, the system is dominated by [VO(dhp)2] and/or cis-VO(dhp)2(Protein); with intermediate strength chelators, i.e. maltolate, acetylacetonate and picolinate, by cis-VO(ma)2(Protein), [VO(acac)2] or [VO(pic)(citrH-1)]3-/[VO(pic)(lactH-1)]- (citr=citrate and lact=lactate) when the V concentration overcomes 100-200µM and by (VO)(hTf)/(VO)2(hTf) when concentration is lower than 100µM; with the weakest chelator, 6-methylpicolinate, (VO)(hTf)/(VO)2(hTf), (VO)(HSA) (hTf = human serum transferrin and HSA = human serum albumin), and VO(mepic)(Protein)(OH) are the major species at concentration higher than 100-200µM, whereas hydrolytic processes are observed for lower concentrations. For [VO(dhp)2], [VO(ma)2], [VO(acac)2] and [VO(pic)2(H2O)], the EPR spectra remain unaltered with elapsing time, while for mepic they change significantly because the hydrolyzed VIVO species are complexed by the serum bioligands, in particular by lactate. The rate of oxidation in the serum is [VO(dhp)2]>[VO(ma)2]>[VO(acac)2] and reflects the order of E1/2 values.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Suero/química , Vanadio/sangre , Ácido Cítrico/sangre , Diabetes Mellitus/tratamiento farmacológico , Humanos , Ácido Láctico/sangre , Albúmina Sérica/metabolismo , Transferrina/metabolismo , Vanadio/uso terapéutico
18.
Inorg Chem ; 55(15): 7373-87, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27399275

RESUMEN

Density functional theory (DFT) calculations of the (51)V hyperfine coupling (HFC) tensor A have been completed for 20 "bare" V(IV) complexes with different donor sets, electric charges, and coordination geometries. Calculations were performed with ORCA and Gaussian software, using functionals BP86, TPSS0, B1LYP, PBE0, B3LYP, B3P, B3PW, O3LYP, BHandHLYP, BHandH, and B2PLYP. Among the basis sets, 6-311g(d,p), 6-311++g(d,p), VTZ, cc-pVTZ, def2-TZVPP, and the "core properties" CP(PPP) were tested. The experimental Aiso and Ai (where i = x or z, depending on the geometry and electronic structure of V(IV) complex) were compared with the values calculated by DFT methods. The results indicated that, based on the mean absolute percentage deviation (MAPD), the best functional to predict Aiso or Ai is the double hybrid B2PLYP. With this functional and the basis set VTZ, it is possible to predict the Aiso and Az of the EPR spectrum of amavadin with deviations of -1.1% and -2.0% from the experimental values. The results allowed us to divide the spectra of nonoxido V(IV) compounds in three types-called "type 1", "type 2", and "type 3", characterized by different composition of the singly occupied molecular orbital (SOMO) and relationship between the values of Ax, Ay, and Az. For "type 1" spectra, Az ≫ Ax ≈ Ay and Az is in the range of (135-155) × 10(-4) cm(-1); for "type 2" spectra, Ax ≈ Ay ≫ Az and Ax ≈ Ay are in the range of (90-120) × 10(-4) cm(-1); and for the intermediate spectra of "type 3", Az > Ay > Ax or Ax > Ay > Az, with Az or Ax values in the range of (120-135) × 10(-4) cm(-1). The electronic structure of the V(IV) species was also discussed, and the results showed that the values of Ax or Az are correlated with the percent contribution of V-dxy orbital in the SOMO. Similarly to V(IV)O species, for amavadin the SOMO is based mainly on the V-dxy orbital, and this accounts for the large experimental value of Az (153 × 10(-4) cm(-1)).


Asunto(s)
Alanina/análogos & derivados , Ácidos Hidroxámicos/química , Compuestos de Vanadio/química , Alanina/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares
19.
J Inorg Biochem ; 161: 18-26, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27184413

RESUMEN

The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups.


Asunto(s)
Antineoplásicos , Antioxidantes , Flavonoides , Especies Reactivas de Oxígeno/química , Vanadatos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Flavonoides/síntesis química , Flavonoides/química , Vanadatos/síntesis química , Vanadatos/química
20.
Metallomics ; 8(5): 532-41, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27121101

RESUMEN

The interaction of the potential anti-tumor agent vanadocene dichloride ([Cp2VCl2] or VDC) with some relevant bioligands of the cytosol such as proteins (Hb), amino acids (glycine and histidine), NADH derivatives (NADH, NADPH, NAD(+) and NADP(+)), reductants (GSH and ascorbic acid), phosphates (HPO4(2-), P2O7(4-), cAMP, AMP, ADP and ATP) and carboxylate derivatives (lactate) and its uptake by red blood cells were studied. The results indicated that [Cp2VCl2] transforms at physiological pH into [Cp2V(OH)2] and that only HPO4(2-), P2O7(4-), lactate, ATP and ADP form mixed species with the [Cp2V](2+) moiety replacing the two hydroxide ions. EPR and electronic absorption spectroscopy, agarose gel electrophoresis and spin trapping measurements allow excluding any direct interaction and/or intercalation with DNA and the formation of reactive oxygen species (ROS) in Fenton-like reactions. Uptake experiments by erythrocytes suggested that VDC crosses the membrane and enters inside the cells, whereas 'bare' V(IV) transforms into V(IV)O species with loss of the two cyclopentadienyl rings. This transformation in the cellular environment could be related to the mechanism of action of VDC.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Vanadio/farmacología , Antineoplásicos/metabolismo , ADN/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Humanos , Ligandos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Vanadio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...