Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocr Connect ; 13(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781402

RESUMEN

Objectives: Cold exposure is linked to cardiometabolic benefits. Cold activates brown adipose tissue (BAT), increases energy expenditure, and induces secretion of the hormones fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). The cold-induced increase in energy expenditure exhibits a diurnal rhythm in men. Therefore, we aimed to investigate the effect of cold exposure on serum FGF21 and GDF15 levels in humans and whether cold-induced changes in FGF21 and GDF15 levels differ between morning and evening in males and females. Method: In this randomized cross-over study, serum FGF21 and GDF15 levels were measured in healthy lean males (n = 12) and females (n = 12) before, during, and after 90 min of stable cold exposure in the morning (07:45 h) and evening (19:45 h) with a 1-day washout period in between. Results: Cold exposure increased FGF21 levels in the evening compared to the morning both in males (+61% vs -13%; P < 0.001) and in females (+58% vs +8%; P < 0.001). In contrast, cold exposure did not significantly modify serum GDF15 levels, and no diurnal variation was found. Changes in FGF21 and GDF15 levels did not correlate with changes in cold-induced energy expenditure in the morning and evening. Conclusion: Cold exposure increased serum FGF21 levels in the evening, but not in the morning, in both males and females. GDF15 levels were not affected by cold exposure. Thus, this study suggests that the timing of cold exposure may influence cold-induced changes in FGF21 levels but not GDF15 levels and seems to be independent of changes in energy expenditure.

2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673910

RESUMEN

Endothelial cell (EC) injury is a crucial contributor to the progression of diabetic kidney disease (DKD), but the specific EC populations and mechanisms involved remain elusive. Kidney ECs (n = 5464) were collected at three timepoints from diabetic BTBRob/ob mice and non-diabetic littermates. Their heterogeneity, transcriptional changes, and alternative splicing during DKD progression were mapped using SmartSeq2 single-cell RNA sequencing (scRNAseq) and elucidated through pathway, network, and gene ontology enrichment analyses. We identified 13 distinct transcriptional EC phenotypes corresponding to different kidney vessel subtypes, confirmed through in situ hybridization and immunofluorescence. EC subtypes along nephrons displayed extensive zonation related to their functions. Differential gene expression analyses in peritubular and glomerular ECs in DKD underlined the regulation of DKD-relevant pathways including EIF2 signaling, oxidative phosphorylation, and IGF1 signaling. Importantly, this revealed the differential alteration of these pathways between the two EC subtypes and changes during disease progression. Furthermore, glomerular and peritubular ECs also displayed aberrant and dynamic alterations in alternative splicing (AS), which is strongly associated with DNA repair. Strikingly, genes displaying differential transcription or alternative splicing participate in divergent biological processes. Our study reveals the spatiotemporal regulation of gene transcription and AS linked to DKD progression, providing insight into pathomechanisms and clues to novel therapeutic targets for DKD treatment.


Asunto(s)
Empalme Alternativo , Nefropatías Diabéticas , Células Endoteliales , Análisis de la Célula Individual , Transcriptoma , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Análisis de la Célula Individual/métodos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Riñón/metabolismo , Riñón/patología , Regulación de la Expresión Génica , Transcripción Genética , Perfilación de la Expresión Génica/métodos , Masculino
3.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648330

RESUMEN

Analogues of the hepatokine fibroblast growth factor 21 (FGF21) are in clinical development for type 2 diabetes and nonalcoholic steatohepatitis (NASH) treatment. Although their glucose-lowering and insulin-sensitizing effects have been largely unraveled, the mechanisms by which they alleviate liver injury have only been scarcely addressed. Here, we aimed to unveil the mechanisms underlying the protective effects of FGF21 on NASH using APOE*3-Leiden.CETP mice, a well-established model for human-like metabolic diseases. Liver-specific FGF21 overexpression was achieved in mice, followed by administration of a high-fat high-cholesterol diet for 23 weeks. FGF21 prevented hepatic lipotoxicity, accompanied by activation of thermogenic tissues and attenuation of adipose tissue inflammation, improvement of hyperglycemia and hypertriglyceridemia, and upregulation of hepatic programs involved in fatty acid oxidation and cholesterol removal. Furthermore, FGF21 inhibited hepatic inflammation, as evidenced by reduced Kupffer cell (KC) activation, diminished monocyte infiltration, and lowered accumulation of monocyte-derived macrophages. Moreover, FGF21 decreased lipid- and scar-associated macrophages, which correlated with less hepatic fibrosis as demonstrated by reduced collagen accumulation. Collectively, hepatic FGF21 overexpression limits hepatic lipotoxicity, inflammation, and fibrogenesis. Mechanistically, FGF21 blocks hepatic lipid influx and accumulation through combined endocrine and autocrine signaling, respectively, which prevents KC activation and lowers the presence of lipid- and scar-associated macrophages to inhibit fibrogenesis.


High-calorie modern diets have contributed to growing rates of obesity-linked diseases. One such disease is non-alcoholic steatohepatitis or NASH for short, which affects about 5% of adults in the United States. The livers of people with this condition accumulate fat, become inflamed, and develop scar tissue. People with NASH are also at increased risk of developing liver cancer, type 2 diabetes, and heart disease. Currently, no drugs are available to treat the condition and prevent such severe complications. Previous research has shown the liver produces a stress hormone, called FGF21, in response to fat accumulation. This hormone boosts fat burning and so helps to reduce excess fat in the liver. Drugs that mimic FGF21 have already been developed for type 2 diabetes. But so far, it was unclear if such drugs could also help reduce liver inflammation and scarring in patients with NASH. Liu et al. show that increasing the production of FGF21 in mice with a NASH-like condition reduces fat accumulation, liver inflammation, and scarring. In the experiments, the researchers used gene therapy to ramp up FGF21 production in the livers of mice that develop obesity and a NASH-like condition when fed a high-fat diet for 23 weeks. Increasing FGF21 production prevented the mice from developing obesity while on the high fat diet by making the body burn more fat in the liver and brown fat tissue. The treatment also reduced inflammation and prevented scarring by reducing the number and activity of immune cells in the liver. Increasing the production of the stress hormone FGF21 prevents diet-induced obesity and NASH in mice fed a high-fat diet. More studies are necessary to determine if using gene therapy to increase FGF21 may also cause weight loss and could reverse liver damage in mice that already have NASH. If this approach is effective in mice, it may be tested in humans, a process that may take several years. If human studies are successful, FGF21-boosting therapy might provide a new treatment approach for obesity or NASH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Activación de Macrófagos , Cicatriz/patología , Hígado/metabolismo , Inflamación/patología , Dieta Alta en Grasa , Colesterol/metabolismo , Lípidos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Nat Commun ; 13(1): 6020, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241646

RESUMEN

The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fosfatidiletanolaminas , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidiletanolaminas/metabolismo
5.
Mol Cell Biol ; 36(20): 2583-95, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27503855

RESUMEN

Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca(2+), and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R.


Asunto(s)
Citoesqueleto/metabolismo , Neutrófilos/efectos de los fármacos , Receptores de Superficie Celular/agonistas , Factor de Necrosis Tumoral alfa/farmacología , Acetatos/farmacología , Calcio/metabolismo , Humanos , Inflamación , Neutrófilos/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Superóxidos/metabolismo
6.
J Am Chem Soc ; 138(31): 9853-63, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27265247

RESUMEN

We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA