Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 111: 108084, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805864

RESUMEN

Trastuzumab resistance presents a significant challenge in the treatment of HER2+ breast cancer, necessitating the investigation of combination therapies to overcome this resistance. Honokiol, a compound with broad anticancer activity, has shown promise in this regard. This study aims to discover the effect of honokiol in increasing trastuzumab sensitivity in HER2+ trastuzumab-resistant breast cancer cells HCC1954 and the underline mechanisms behind. A bioinformatics study performed to explore the most potential target hub gene for honokiol in HER2+ breast cancer. Honokiol, trastuzumab and combined treatment cytotoxicity activity was then evaluated in both parental HCC1954 and trastuzumab resistance (TR-HCC1954) cells using MTT assay. The expression levels of these hub genes were then analyzed using qRT-PCR and those that could not be analyzed were subjected to molecular docking to determine their potential. Honokiol showed a potent cytotoxicity activity with an IC50 of 41.05 µM and 69.61 µM in parental HCC1954 and TR-HCC1954 cell line respectively. Furthermore, the combination of honokiol and trastuzumab resulted in significant differences in cytotoxicity in TR-HCC1954 cells at specific concentrations. Molecular docking and the qRT-PCR showed that the potential ERα identified from the bioinformatics analysis was affected by the treatment. Our results show that honokiol has the potential to increase the sensitivity of trastuzumab in HER2+ trastuzumab resistant breast cancer cell line HCC1954 by affecting regulating estrogen receptor signaling. Further research is necessary to validate these findings.


Asunto(s)
Compuestos de Bifenilo , Neoplasias de la Mama , Biología Computacional , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno , Lignanos , Simulación del Acoplamiento Molecular , Receptor ErbB-2 , Trastuzumab , Humanos , Trastuzumab/farmacología , Trastuzumab/química , Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Lignanos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Femenino , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos , Compuestos Alílicos , Fenoles
2.
Adv Pharmacol Pharm Sci ; 2024: 1230239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808119

RESUMEN

Human cognition fundamentally depends on memory. Alzheimer's disease exhibits a strong correlation with a decline in this factor. Phosphodiesterase-4 B (PDE4B) plays a crucial role in neurodegenerative disorders, and its inhibition is one of the promising approaches for memory enhancement. This study aimed to identify secondary metabolites in white cabbage, coffee, and red onion extracts and identify their molecular interaction with PDE4B by in silico and in vitro experiments. Crushed white cabbage and red onion were macerated separately with ethanol to yield respective extracts, and ground coffee was boiled with water to produce aqueous extract. Thin layer chromatography (TLC)-densitometry was used to examine the phytochemicals present in white cabbage, coffee, and red onion extracts. Molecular docking studies were performed to know the interaction of test compounds with PDE4B. TLC-densitometry analysis showed that chlorogenic acid and quercetin were detected as major compounds in coffee and red onion extracts, respectively. In silico studies revealed that alpha-tocopherol (binding free energy (∆Gbind) = -38.00 kcal/mol) has the strongest interaction with PDE4B whereas chlorogenic acid (∆Gbind = -21.50 kcal/mol) and quercetin (∆Gbind = -17.25 kcal/mol) exhibited moderate interaction. In vitro assay showed that the combination extracts (cabbage, coffee, and red onion) had a stronger activity (half-maximal inhibitory concentration (IC50) = 0.12 ± 0.03 µM) than combination standards (sinigrin, chlorogenic acid, and quercetin) (IC50 = 0.17 ± 0.03 µM) and rolipram (IC50 = 0.15 ± 0.008 µM). Thus, the combination extracts are a promising cognitive enhancer by blocking PDE4B activity.

3.
Asian Pac J Cancer Prev ; 25(5): 1623-1634, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809634

RESUMEN

OBJECTIVE: The long-term use of trastuzumab (TRZ), a therapeutic agent for human epidermal growth factor receptor 2 (HER2)+ breast cancer subtype (HER2+ BC), induces resistance. Borneol (BOR) exerts anticancer effects on various types of cancer. However, its anticancer effect on HER2+ BC remains unknown. This study aimed to determine the potential target genes of BOR and its effect on overcoming the resistance of HER2+ BC to TRZ. METHODS: The hub gene of  BOR's potential target on HER2+ BC cells was determined via a bioinformatics approach. Resistant HCC1954 cells (HCC1954-TR) were obtained through repeated inducement of HCC1954 cancer cells with TRZ. The cells were then subjected to cytotoxic tests involving single compounds and their combinations. Then, the hub gene expression was determined using quantitative reverse-transcription polymerase chain reaction. The interaction between BOR and selected proteins was measured through molecular docking. RESULTS: Hub genes IL6, TNF, ESR1, IL1B, CYP19A1, AR, NR3C1, RELA, CYP17A1, and GPT were obtained via a bioinformatics approach. HCC1954-TR cells were successfully established. The TRZ-BOR combination treatment of parental HCC1954 (400 µg/mL and 25 µM) and HCC1954-TR (800 µg/mL and 100 µM) yielded considerably better results compared with BOR or TRZ alone. The expressions of AR, GPT, and ESR1 under the TRZ-BOR combination were notably different compared with those under single exposure. The molecular docking study of CYP19A1, CYP17A1, NR3C1, and IL-1ß highlighted the potential interaction between BOR and such proteins. CONCLUSION: BOR improved the cytotoxic effects of TRZ on HCC1954 and HCC1954-TR cell lines, where it specifically targets AR, ESR1, and GPT genes. In addition, the BOR effect, which counteracted the resistance of HCC1954-TR cells to TRZ, was mediated by genes CYP19A1, CYP17A1, NR3C1, IL-1, and RELA. However, additional research is required to validate their role in BOR activity to circumvent the resistance of HER2+ BC to TRZ.


Asunto(s)
Neoplasias de la Mama , Canfanos , Biología Computacional , Resistencia a Antineoplásicos , Receptor ErbB-2 , Trastuzumab , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Trastuzumab/farmacología , Femenino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Biología Computacional/métodos , Canfanos/farmacología , Simulación del Acoplamiento Molecular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos Inmunológicos/farmacología , Células Tumorales Cultivadas , Línea Celular Tumoral
4.
Mol Inform ; 41(7): e2100223, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34963040

RESUMEN

The ß3 -adrenergic receptor (ß3 -AR) is found in several tissues such as adipose tissue and urinary bladder. It is a therapeutic target because it plays a role in thermogenesis, lipolysis, and bladder relaxation. Two ß3 -AR agonists are used clinically: mirabegron 1 and vibegron 2, which are indicated for overactive bladder syndrome. However, these drugs show adverse effects, including increased blood pressure in mirabegron patients. Hence, new ß3 -AR agonists are needed as starting points for drug development. Previous pharmacophore modeling studies of the ß3 -AR did not involve experimental in vitro validation. Therefore, this study aimed to conduct prospective virtual screening and confirm the biological activity of virtual hits. Ligand-based pharmacophore modeling was performed since no 3D structure of human ß3 -AR is yet available. A dataset consisting of ß3 -AR agonists was prepared to build and validate the pharmacophore models. The best model was employed for prospective virtual screening, followed by physicochemical property filtering and a docking evaluation. To confirm the activity of the virtual hits, an in vitro assay was conducted, measuring cAMP levels at the cloned ß3 -AR. Out of 35 tested compounds, 4 compounds were active in CHO-K1 cells expressing the human ß3 -AR, and 8 compounds were active in CHO-K1 cells expressing the mouse ß3 -AR.


Asunto(s)
Tejido Adiposo , Agonistas Adrenérgicos beta , Agonistas Adrenérgicos beta/uso terapéutico , Animales , Células CHO , Cricetinae , Cricetulus , Ratones , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...