Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2214700120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626562

RESUMEN

KCNH2 encodes hERG1, the voltage-gated potassium channel that conducts the rapid delayed rectifier potassium current (IKr) in human cardiac tissue. hERG1 is one of the first channels expressed during early cardiac development, and its dysfunction is associated with intrauterine fetal death, sudden infant death syndrome, cardiac arrhythmia, and sudden cardiac death. Here, we identified a hERG1 polypeptide (hERG1NP) that is targeted to the nuclei of immature cardiac cells, including human stem cell-derived cardiomyocytes (hiPSC-CMs) and neonatal rat cardiomyocytes. The nuclear hERG1NP immunofluorescent signal is diminished in matured hiPSC-CMs and absent from adult rat cardiomyocytes. Antibodies targeting distinct hERG1 channel epitopes demonstrated that the hERG1NP signal maps to the hERG1 distal C-terminal domain. KCNH2 deletion using CRISPR simultaneously abolished IKr and the hERG1NP signal in hiPSC-CMs. We then identified a putative nuclear localization sequence (NLS) within the distal hERG1 C-terminus, 883-RQRKRKLSFR-892. Interestingly, the distal C-terminal domain was targeted almost exclusively to the nuclei when overexpressed HEK293 cells. Conversely, deleting the NLS from the distal peptide abolished nuclear targeting. Similarly, blocking α or ß1 karyopherin activity diminished nuclear targeting. Finally, overexpressing the putative hERG1NP peptide in the nuclei of HEK cells significantly reduced hERG1a current density, compared to cells expressing the NLS-deficient hERG1NP or GFP. These data identify a developmentally regulated polypeptide encoded by KCNH2, hERG1NP, whose presence in the nucleus indirectly modulates hERG1 current magnitude and kinetics.


Asunto(s)
Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Miocitos Cardíacos , Animales , Humanos , Ratas , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo
2.
J Biol Chem ; 299(2): 102778, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36496073

RESUMEN

The voltage-gated channel, hERG1, conducts the rapid delayed rectifier potassium current (IKr) and is critical for human cardiac repolarization. Reduced IKr causes long QT syndrome and increases the risk for cardiac arrhythmia and sudden death. At least two subunits form functional hERG1 channels, hERG1a and hERG1b. Changes in hERG1a/1b abundance modulate IKr kinetics, magnitude, and drug sensitivity. Studies from native cardiac tissue suggest that hERG1 subunit abundance is dynamically regulated, but the impact of altered subunit abundance on IKr and its response to external stressors is not well understood. Here, we used a substrate-driven human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturation model to investigate how changes in relative hERG1a/1b subunit abundance impact the response of native IKr to extracellular acidosis, a known component of ischemic heart disease and sudden infant death syndrome. IKr recorded from immatured hiPSC-CMs displays a 2-fold greater inhibition by extracellular acidosis (pH 6.3) compared with matured hiPSC-CMs. Quantitative RT-PCR and immunocytochemistry demonstrated that hERG1a subunit mRNA and protein were upregulated and hERG1b subunit mRNA and protein were downregulated in matured hiPSC-CMs compared with immatured hiPSC-CMs. The shift in subunit abundance in matured hiPSC-CMs was accompanied by increased IKr. Silencing hERG1b's impact on native IKr kinetics by overexpressing a polypeptide identical to the hERG1a N-terminal Per-Arnt-Sim domain reduced the magnitude of IKr proton inhibition in immatured hiPSC-CMs to levels comparable to those observed in matured hiPSC-CMs. These data demonstrate that hERG1 subunit abundance is dynamically regulated and determines IKr proton sensitivity in hiPSC-CMs.


Asunto(s)
Canal de Potasio ERG1 , Conductividad Eléctrica , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Potasio , Subunidades de Proteína , Protones , Humanos , Acidosis/metabolismo , Canal de Potasio ERG1/química , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , ARN Mensajero/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Regulación hacia Abajo , Espacio Extracelular
3.
PLoS One ; 12(7): e0180241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28742822

RESUMEN

Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the ß-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.


Asunto(s)
Escherichia coli/enzimología , Metales/metabolismo , Neopterin/análogos & derivados , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Cobalto/química , Cobalto/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Magnesio/química , Magnesio/metabolismo , Metales/química , Simulación del Acoplamiento Molecular , Neopterin/química , Neopterin/metabolismo , Níquel/química , Níquel/metabolismo , Conformación Proteica , Pirofosfatasas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Hidrolasas Nudix
4.
Nat Chem Biol ; 12(12): 1031-1036, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694799

RESUMEN

Nitroaromatic compounds are typically toxic and resistant to degradation. Bradyrhizobium species strain JS329 metabolizes 5-nitroanthranilic acid (5NAA), which is a molecule secreted by Streptomyces scabies, the plant pathogen responsible for potato scab. The first biodegradation enzyme is 5NAA-aminohydrolase (5NAA-A), a metalloprotease family member that converts 5NAA to 5-nitrosalicylic acid. We characterized 5NAA-A biochemically and obtained snapshots of its mechanism. 5NAA-A, an octamer that can use several divalent transition metals for catalysis in vitro, employs a nucleophilic aromatic substitution mechanism. Unexpectedly, the metal in 5NAA-A is labile but is readily loaded in the presence of substrate. 5NAA-A is specific for 5NAA and cannot hydrolyze other tested derivatives, which are likewise poor inhibitors. The 5NAA-A structure and mechanism expand our understanding of the chemical ecology of an agriculturally important plant and pathogen, and will inform bioremediation and biocatalytic approaches to mitigate the environmental and ecological impact of nitroanilines and other challenging substrates.


Asunto(s)
Aminohidrolasas/metabolismo , Nitrocompuestos/farmacología , Compuestos Organometálicos/farmacología , Elementos de Transición/farmacología , Aminohidrolasas/química , Barbitúricos/química , Barbitúricos/metabolismo , Catálisis , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Nitrocompuestos/química , Compuestos Organometálicos/química , Salicilatos/química , Salicilatos/metabolismo , Elementos de Transición/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA