Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pak J Pharm Sci ; 36(6): 1767-1775, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38124417

RESUMEN

Oral dispersible tablets (ODTs) are patient compliant dosage forms which rapidly disintegrate in the mouth following active absorption with rapid onset of action. The current study was designed to resolve compression problems used for ODTs, as high compression force exhibited hardness and drug release problems. Formulations, F1-F9 were compressed at three different forces 44, 54 and 64 kN using cross-carmellose sodium (CCS) and sodium starch glycolate (SSG) and evaluated for pre and post compression. Formulations F1, F4 and F7 which were compressed at 44 kN showed hardness ranges between 5.09-6.15 with lowest DT (less than 15 s) and better LTZ release. While F2, F5 and F8 (compressed at 54 kN) demonstrated hardness in between 6.90-7.02. Similarly, F3, F6 and F9 compressed at 64 kN showed hardness values between 8.70-8.98 with increased DT and slow LTZ release. Friability results for all the formulations were within United States Pharmacopeial (USP) specifications (<1%). All formulations depicted t-test value <0.5, hence it found that all formulations showed significant statistical value within limits, however best compression force 44 kN showed low p value. It was concluded that optimized compression force for ODTs was 44 kN among all employed forces that exhibited desirable drug release.


Asunto(s)
Química Farmacéutica , Excipientes , Humanos , Química Farmacéutica/métodos , Voluntarios Sanos , Comprimidos , Composición de Medicamentos/métodos
2.
Gels ; 9(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37998961

RESUMEN

Tacrolimus (TL) is a topical calcineurin inhibitor immunosuppressive drug widely used to manage various skin disorders. Herein, we report a TL-loaded microsphere gel formulation with severe atopic dermatitis effects that are required to manage skin disorders. The current study adopted a modified emulsion solvent evaporation technique to synthesize TL-loaded microspheres, which were further converted into gels for skin use. Characterization of the synthesized formulation was performed by differential dynamic light scattering, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography, Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry, and drug release. A Franz diffusion cell was used to study the diffusion of TL for up to 8 h at pH 6.8 and 5.5. Evaluation of cell viability was determined by MTT assay and showed higher IC50 values compared to the plain drug. RNA extraction, real-time polymerase chain reaction (RT-PCR), and reverse transcription were also performed to determine the expression levels of the anti-inflammatory cytokine IL-2. Particle size determination was performed by a zeta sizer, and the TL microsphere size was 1745 ± 70 nm with a good polydispersity (0.337 ± 0.12). The drug entrapment efficiency was also very good at 60% ± 10, and the drug release was 93.9% ± 3.5 within 8 h. An in vitro diffusion study of the formulation also showed improved permeability at both pH values (4.5 and 5.5). The findings of the hemolytic tests demonstrated that TL-MG at concentrations of 50, 100, and 200 mg/mL did not produce any hemolysis. A dose-dependent pattern of cytotoxicity was found during the cell viability assay, with an IC50 value of 787.55 ± 12.78 µg/mL. There was a significant decrease in the IL-2 level in the TL-MG group compared to the other groups. TL-MG microspheres were nontoxic carriers for tacrolimus delivery, with greater loading capacity, a significant release profile, and enhanced cellular uptake with improved permeability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA