Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(5): 550-553, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088785

RESUMEN

We have developed a new scaffold that exhibits an efficient intramolecular through-space charge transfer (CT). In this design, electron-rich benzofuran and electron-deficient ynone groups are placed strategically in proximity via a naphthalene spacer. Charge transfer is supported by distinct CT bands in the visible region (>500 nm) in their UV-vis absorption and emission spectra.

2.
Inorg Chem ; 62(41): 16994-17011, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37782822

RESUMEN

A general synthetic method has been developed to synthesize spherical mesoporous metal pyrophosphate (m-M2P2O7) particles and to fabricate graphite rod-coated (GR-M2P2O7) electrodes, which are important as energy storage materials. The clear aqueous solution of the ingredients (namely, [M(H2O)6](NO3)2, H4P2O7, water, and P123) assembles, upon excess water evaporation, into a mesostructured M2HxP2O7(NO3)x·nH2O-P123 semisolid that is calcined to produce the spherical m-M2P2O7 (where M is Ni, Co, Mn, Ni/Co, or Mn/Co) particles, coated over GR, and calcined to fabricate the GR-M2P2O7 electrodes. The mesostructured and mesoporous materials are characterized using diffraction (XRD), spectroscopy (ATR-FTIR, XPS, and EDX), N2 adsorption-desorption, and imaging (SEM and TEM) techniques. The electrochemical/chemical investigations showed that the GR-M2P2O7 electrodes transform to ß-M(OH)2 in alkali media. The spherical m-Ni2P2O7 particles transform into spherical ultrathin nanoflakes of ß-Ni(OH)2. However, the m-Mn2P2O7 and m-Co2P2O7 particles transform to much thicker ß-Mn(OH)2 and ß-Co(OH)2 plate-like nanoparticles, respectively. The size and morphology of the ß-M(OH)2 particle depend on the Ksp of the M2P2O7 and determine the charge capacity (CC) and specific capacitance (SC) of the electrodes. The ß-Ni(OH)2 and ß-Ni0.67Co0.33(OH)2 electrodes display high CC (129 and 170 mC/cm2, respectively) and SC (234.5 and 309 mF/cm2, respectively) values. However, these values are almost 10× smaller in ß-Mn(OH)2, ß-Co(OH)2, ß-Mn1-xCox(OH)2, and cobalt-rich ß-Ni1-xCox(OH)2 electrodes.

3.
Anal Chem ; 95(40): 14861-14869, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37768186

RESUMEN

X-ray photoelectron spectroscopy (XPS) has been utilized to record binding energy changes upon applying direct current (DC) and/or alternating current (AC) (square-wave) bias with different frequencies on a coplanar capacitor, having an ionic liquid (IL) film as the electrolyte. Electrical potential developments in numerous locations on the device are extracted from the variations in binding energy positions of the atomic core levels, which together with electrochemical measurements are used to extract local information before and after insertion of additional resistors in series. The presence of the IL introduces complex charging/discharging processes with a direct influence on the electrical double layer (EDL) formation, some of which can be untangled from each other via AC modulation by choosing appropriate time windows of observation. Accordingly, under 10 kHz modulation, fast processes are sampled, which are associated with electronic currents, and effects of slow migratory currents can be measured using 0.1 Hz. The addition of serial resistors allows us to quantify AC currents passing through, which reveals the magnitude of the system's impedance under different conditions. This process surprisingly reverses differences(s) in the voltage developments between the low and high frequencies over the electrified electrodes compared to those over the porous membrane in between. Our approach turns XPS into a powerful electrical and surface-sensitive tool for extracting localized electrochemical properties in a noninvasive and direct way. We expect that a wider utilization of the technique will lead to better identification of the obstacles for developing the next-generation sensing, energy harvesting, and storage systems as well as devices for iontronic/neuromorphic applications.

4.
Chempluschem ; 88(1): e202200447, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36631291

RESUMEN

The molten phase of transition metal and lithium salts self-assemble with non-ionic surfactants to form lyotropic liquid crystalline (LLC) mesophases, which are important in the development of gel-electrolytes and mesoporous materials. Here, we show that LiH2 PO4 forms a semi-stable LLC mesophase with 10-lauryl ether (C12 H25 (OCH2 CH2 )10 OH, C12 E10 ), decoded as Li-EO-X (X is LiH2 PO4 /C12 E10 mole ratio and between 2 and 200). The stability of the Li-EO-X phase is improved by increasing salt concentration (X>20) in the media. The semi-stable Li-EO-X mesophase is further stabilized by adding either water by controlling the humidity or H3 PO4 (PA) to the media. The phase behaviour of the above samples was investigated using POM, XRD, conductivity, and ATR-FTIR measurements. The addition of PA not only brings stability and higher conductivity (increase from 0.1 to 8.9 mS/cm) to the mesophase but also produce an LLC gel-electrolyte with a high buffer capacity that may be useful and important in various applications.

5.
Faraday Discuss ; 236(0): 86-102, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35506435

RESUMEN

Many electrochemical devices are based on the fundamental process of ion migration and accumulation on surfaces. Complex interplay of molecular properties of ions and device dimensions control the entire process and define the overall dynamics of the system. Particularly, for ionic liquid-based electrolytes it is often not clear which property, and to what extent, contributes to the overall performance of the device. Herein we use X-ray photoelectron spectroscopy (XPS) while the device is under electrical bias. Such a procedure reveals localized electrical potential developments, through binding energy shifts of the atomic core levels, in a chemically specific fashion. Combining it with square-wave AC modulation, the information can also be extended to time domain, and we investigate devices configured as a coplanar capacitor, with an ionic liquid as the electrolyte, in macro-dimensions. Our analysis reveals that a nonlinear voltage profile across the device emerges from spatially non-uniform electrical double layer formation on electrode surfaces. Interestingly the coplanar capacitor has an extremely slow time response which is particularly controlled by IL film thickness. XPS measurements can capture the ion dynamics in the tens of seconds to microseconds range, and reveal that ionic motion is all over the device, including on metallic electrode regions. This behavior can only be attributed to motion in more than one dimension. The ion dynamics can also be faithfully simulated by using a modified PNP equation, taking into account steric effects, and device dimensions. XPS measurements on two devices with different dimensions corroborated and validated the simulation results. The present results propose a new experimental approach and provide new insights into the dynamics of ions across electrochemical devices.

6.
Langmuir ; 37(49): 14443-14453, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34856801

RESUMEN

The lyotropic liquid crystalline (LLC) mesophase forms upon evaporation of water from aqueous solutions of LiX salts (X is Cl-, Br-, NO3-, or SCN-) and a surfactant [C12H25(OCH2CH2)10OH, abbreviated as C12E10]. The LiX/C12E10/H2O aqueous solutions have been monitored (during evaporation of their excess water to obtain stable LLC mesophases) by gravimetric, spectroscopic, and conductivity measurements to elucidate the role of water in these mesophases. The water/salt molar ratio in stable mesophases changes from 1.5 to 8.0, depending on the counteranion of the salt and the ambient humidity of the laboratory. The LiX/C12E10/H2O LLC mesophases lose water at lower humidity levels and absorb water at higher humidity levels. The LiCl-containing mesophase holds as few as four structural water molecules per LiCl, whereas the LiNO3 mesophase holds 1.5 waters per salt (least among those assessed). This ratio strongly depends on the atmospheric humidity level; the water/LiX mole ratio increases by 0.08 ± 0.01 H2O in the LLC mesophases per percent humidity unit. Surprisingly, the LLC mesophases are stable (no salt leaching) in broad humidity (10-85%) and salt/surfactant mole ratio (2-10 LiX/C12E10) ranges. Attenuated total reflectance Fourier transform infrared spectroscopic data show that the water molecules in the mesophase interact with salt species more strongly in the LiCl mesophase and more weakly in the case of the nitrate ion, which is evident by the shift of the O-H stretching band of water. The O-H stretching peak position in the mesophases decreases in the order νLiCl > νLiBr > νLiSCN > νLiNO3 and accords well with the H2O/LiX mole ratio. The conductivity of the LLC mesophase also responds to the amount of water as well as the nature of the counteranion (X-). The conductivity decreases in the order σLiCl > σLiBr > σLiNO3 > σLiSCN at low salt mole ratios and in the order σLiBr > σLiCl > σLiNO3 > σLiSCN at higher ratios due to structural changes in the mesophase.

7.
Front Neurosci ; 15: 652608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248476

RESUMEN

Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.

8.
Langmuir ; 37(27): 8305-8313, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34185544

RESUMEN

By replacing volatile and flammable organic-based electrolytes with gel electrolytes, dye-sensitized solar cells (DSSCs) may be a viable and more practical alternative to other clean energy sources. Although they present a promising alternative, gel electrolytes still have some drawbacks for practical applications, such as low ionic conductivity and infusion difficulties into the pores of the working electrode. Here, we introduce a new one-step fabrication method that uses a lyotropic liquid crystalline (LLC) gel electrolyte (LiI:I2:H2O:C12H25(OCH2CH2)10OH) and a dye (N719) to construct a DSSC that performs (7.32%) 2.2 times better compared with a traditional two-step production. Water plays a key role in the gel electrolyte, where the H2O/LiI mole ratio is around 2.57 under ambient laboratory conditions (ALCs); however, this ratio linearly increases to 4.00 and then to 5.85 at 40 and 75% humidities, respectively, without affecting the two-dimensional (2D) hexagonal structure of the mesophase. The ionic conductivity of the gel electrolyte linearly increases accordingly, by 2.2 (4.8 × 10-5 to 10.6 × 10-5) and 13.1 times (63.0 × 10-5 S/cm) from ALC to 40 and ALC to 75% humidity, respectively. Increasing water in the gel phase improves the conductivity of the LLC mesophase and the short-circuit current (Isc) of the DSSC, but negatively influences the open-circuit voltage (Voc) of the cell, equilibrium reaction between the LiI and I2, and the anchoring of the dye molecules over the titania surface.

9.
Chem Commun (Camb) ; 56(79): 11883-11886, 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021264

RESUMEN

From 60 solvent electrolyte combinations tested, we find that Li metal anodes, tested in 1 M LiFSI in DOL:DME exhibit an outstanding cycling performance (>500 cycles) even at high current densities (3 mA cm-2). The excellent performance is ascribed, at least in part, to a low Li nucleation overpotential and a low charge transfer resistance during cycling.

10.
ACS Appl Mater Interfaces ; 12(32): 35940-35949, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32667186

RESUMEN

Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here, we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the faradic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current in the blue spectral window, and the nanoantenna effect is mainly responsible for the improvement in the red spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at three orders of magnitude below the maximum retinal intensity levels, corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultrasensitive plasmon-assisted neurostimulation devices.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanoestructuras/química , Neurotransmisores/química , Simulación por Computador , Técnicas Electroquímicas , Electrones , Oro/química , Humanos , Luz , Neuronas/metabolismo , Procesos Fotoquímicos , Dispersión de Radiación , Análisis de la Célula Individual , Resonancia por Plasmón de Superficie , Propiedades de Superficie
11.
Langmuir ; 35(52): 16989-16999, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31794669

RESUMEN

Operando X-ray photoelectron spectroscopy (o-XPS) has been used to record the binding energy shifts in the C 1s peak of a pristine poly(ethylene glycol) (PEG) liquid drop in an electrowetting on dielectric (EWOD) geometry and after exposing it to several high-voltage breakdown processes. This was achieved by recording XPS data while the samples were subjected to 10 V dc and ac (square-wave modulation) actuations to extract electrical information related to the liquid and its interface with the dielectric. Through analysis of the XPS data under ac actuation, a critical frequency of 170 Hz is extracted for the pristine PEG, which is translated to a resistance value of 14 MΩ for the liquid and a capacitance value of 60 pF for the dielectric, by the help of simulations using an equivalent circuit model and also by XPS analyses of a mimicking device under similar conditions. The same measurements yield an increased value of 23 MΩ for the resistance of the liquid after the breakdown by assuming that the capacitance of the dielectric stays constant. In addition, an asymmetry in polarity dependence is observed with respect to both the onset of the breakdown voltage and also the leakage behavior of the deteriorated (PEG + dielectric) system such that deviations are more pronounced at positive voltages. Both dc and ac behaviors of the postbreakdown system can also be simulated, but only by introducing an additional element, a diode or a polarity- and magnitude-dependent voltage source (VCVS), which might be attributed to negative charge accumulation at the interface. Measurements for a liquid mixture of PEG with 8% ionic liquid yields an almost 2 orders of magnitude smaller resistance for the drop as a result of the enhanced conductivity by the ions. Coupled with modeling, XPS measurements under dc and ac modulations enable probing unique electrochemical properties of liquid/solid interfaces.

12.
Langmuir ; 35(9): 3319-3326, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768276

RESUMEN

X-ray photoelectron spectroscopic (XPS) data have been recorded for a low-molecular-weight poly(ethylene glycol) microliter-sized sessile liquid drops sitting on a dielectric covered planar electrode while imposing a ±6 V square-wave actuation with varying frequencies between 10-1 and 105 Hz to tap into the information derivable from (AC) electrowetting. We show that this time-varying XPS spectra reveal two distinct behaviors of the device under investigation, below and above a critical frequency, measured as ∼70 Hz for the liquid poly(ethylene glycol) with a 600 Da molecular weight. Below the critical frequency, the liquid complies faithfully to the applied bias, as determined by the constant shift in the binding energy position of the XPS peaks representative of the liquid throughout its entire surface. The liquid completely screens the applied electrical field and the entire potential drop takes place at the liquid/dielectric interface. However, for frequencies above the critical value, the resistive component of the system dominates, resulting in the formation of equipotential surface contours, which are derived from the differences in the positions of the twinned O 1s peaks under AC application. This critical frequency is independent of the size of the liquid drop, and the amplitude of the excitation, but increases when ionic moieties are introduced. The XP spectra under AC actuation is also faithfully simulated using an equivalent circuit model consisting of only resistors and capacitors and using an electrical circuit simulation software. Moreover, a mimicking device is fabricated and its XP spectra are recorded using the Sn 3d peaks of the solder joints at different points on the circuit to confirm the reliability of the measured and simulated AC behaviors of the liquid. These new findings indicate that in contrast to direct current case, XPS measurements under variable frequency AC actuation reveal (through differences in the frequency response) information related to the chemical makeup of the liquid(s) and brings the laboratory-based XPS as a powerful complimentary arsenal to electrochemical analyses of liquids and their interfaces.

13.
Langmuir ; 34(25): 7301-7308, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29870259

RESUMEN

Liquid poly(ethylene glycol) (molecular weight, ∼600 Da) with a low vapor pressure is used as droplets in an ultrahigh-vacuum X-ray photoelectron spectrometer (XPS) chamber with traditional electrowetting on dielectric (EWOD) device geometry. We demonstrate that, using XPS data, independent of the sign of the applied voltage, the droplet expands on the substrate with the application of a nonzero voltage and contracts back when the voltage is brought back to zero. However, the main focus of the present investigation is about tracing the electrical potential developments on and around the droplet, using the shifts in the binding energy positions of the core levels representative of the liquid and/or the substrate in an noninvasive and chemically specific fashion, under imposed electrical fields, with an aim of shedding light on numerous models employed for simulating EWOD phenomenon, as well as on certain properties of liquid/solid interfaces. While the lateral resolution of XPS does not permit to interrogate the interface directly, we explicitly show that critical information can be extracted by probing both sides of the interface simultaneously under external bias in the form of potential steps or direct current. We find that, even though no potential drop is observed at the metal-wire electrode/liquid interface, the entire potential drop develops across the liquid/solid-substrate interface, which is faster than our probe time window (∼100 ms) and is promptly complying with the applied bias until breakdown. No indication of band bending nor additional broadening can be observed in the C 1s peak of the liquid, even under electrical field strengths exceeding 107 V/m. Moreover and surprisingly, the liquid recovers within seconds after each catastrophic breakdown. All of these findings are new and expected to contribute significantly to a better understanding of certain physicochemical properties of liquid/solid interfaces.

14.
ACS Omega ; 2(2): 478-486, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28261688

RESUMEN

Gold nanoparticles (Au NPs) have been electrochemically prepared in situ and in vacuo using two different electrochemical device configurations, containing an ionic liquid (IL), N-N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, that serves both as reaction and as stabilizing media for the NPs. It was observed in both devices that Au NPs were created using an anodically triggered route. The created Au NPs are relatively small (3-7 nm) and reside within the IL medium. X-ray photoelectron spectroscopy is utilized to follow not only the formation of the NPs but also their charging/discharging properties, by monitoring the charging shifts of the Au4f peak representing the electrodes and also the Au NPs as well as the F1s peak of the IL after polarizing one of the electrodes. Accordingly, DC polarization across the electrodes leads to a uniform binding energy shift of F1s of the IL along with that of Au4f of the NPs within. Moreover, this shift corresponds to only half of the applied potential. AC polarization brings out another dimension for demonstrating further the harmony between the charging/discharging property of the IL medium and the Au NPs in temporally and laterally resolved fashions. Polarization of the electrodes result in perfect spectral separation of the Au4f peaks of the NPs from those of the metal in both static (DC) and in time- and position-dependent (AC) modes.

15.
ACS Omega ; 2(7): 3785-3791, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457691

RESUMEN

Concentrated sulfuric acid (SA) and nonionic surfactant (C12H25(OCH2CH2)10OH, C12E10) form lyotropic liquid crystalline (LLC) mesophases in a broad range of SA concentrations; the SA/C12E10 mole ratio may vary from 2 to 11 in the LLC mesophases in the presence of a small amount of water. The mesophase is hexagonal at low SA concentration and cubic at higher concentrations. Three different compositions were prepared (one hexagonal and two cubic) with the SA/C12E10 mole ratio of 2.5, 6, and 9, denoted as 2.5LC, 6LC, and 9LC, respectively. They all display electrochemical SA activity in Pt and Pb systems. Most interestingly, they show the electrochemical formation of stable PbO species in a deeply acidic medium as evidenced by the X-ray diffraction, cyclic voltammetry, and linear sweep voltammetry experiments. The preferable properties of PbO over PbSO4 for lead acid batteries (LABs) make it uniquely positioned as a superior gel electrolyte for the LABs that would mitigate sulfation.

16.
J Phys Chem B ; 115(7): 1590-600, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21280605

RESUMEN

We report on the synthesis and detailed photo-physical investigation of four model chromophore side chain polyisocyanopeptides: two homopolymers of platinum-porphyrin functionalized polyisocyanopeptides (Pt-porphyrin-PIC) and perylene-bis(dicarboximide) functionalized polyisocyanopeptides (PDI-PIC), and two statistical copolymers with different ratios of Pt-porphyrin and PDI molecules attached to a rigid, helical polyisocyanopeptide backbone. (1)H NMR and circular dichroism measurements confirm that our model compounds retain a chiral architecture in the presence of the chromophores. The combination of Pt-porphyrin and PDI chromophores allows charge- and/or energy transfer to happen. We observe the excitation and relaxation pathways for selective excitation of the Pt-porphyrin and PDI chromophores. Studies of photoluminescence and transient absorption on nanosecond and picosecond scales upon excitation of Pt-porphyrin chromophores in our multichromophoric assemblies show similar photophysical features to those of the Pt-porphyrin monomers. In contrast, excitation of perylene chromophores results in a series of energy and charge transfer processes with the Pt-porphyrin group and forms additional charge-transfer states, which behave as an intermediate state that facilitates electronic coupling in these multichromophoric systems.


Asunto(s)
Electrones , Isocianatos/química , Péptidos/química , Polímeros/química , Transferencia de Energía , Isocianatos/síntesis química , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Péptidos/síntesis química , Procesos Fotoquímicos , Polímeros/síntesis química , Espectrofotometría Ultravioleta
17.
Nat Mater ; 7(11): 884-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18931670

RESUMEN

The manipulation of single magnetic molecules may enable new strategies for high-density information storage and quantum-state control. However, progress in these areas depends on developing techniques for addressing individual molecules and controlling their spin. Here, we report success in making electrical contact to individual magnetic N@C(60) molecules and measuring spin excitations in their electron tunnelling spectra. We verify that the molecules remain magnetic by observing a transition as a function of magnetic field that changes the spin quantum number and also the existence of non-equilibrium tunnelling originating from low-energy excited states. From the tunnelling spectra, we identify the charge and spin states of the molecule. The measured spectra can be reproduced theoretically by accounting for the exchange interaction between the nitrogen spin and electron(s) on the C(60) cage.

18.
Chem Rev ; 108(7): 2721-36, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18620371
19.
Langmuir ; 22(9): 4433-7, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16618199

RESUMEN

Self-assembled monolayers and bulk films of thioanilines, polymerized on gold and platinum surfaces, have been characterized and compared to bulk polyaniline (PANI) films. In a previous study [Kuwabata; et al. Langmuir 1999, 15, 6807-6812], only one redox couple was observed in the cyclic voltammetric profile of a polymerized monolayer of thioaniline on gold, in contrast to the known profiles of bulk PANI, which exhibit two couples. We observe two couples in both a polymerized thioaniline monolayer and a bulk polythioaniline (S-PANI) film, but the 200 mV window between the couples (the width of the region of high conductivity) in the S-PANI films is much smaller than the 600 mV window in bulk PANI. We ascribe this difference to the presence of the thiol substituent. The windows of high conductivity of the polymerized thioaniline monolayer and the bulk S-PANI film are the same within the limits of our experiment, implying that the difference in the dimensionality of the films (a 2D monolayer vs 3D bulk films) has a limited effect on the films' voltammetric profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...