Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(12): 1971-1980, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709159

RESUMEN

Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1ß, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.


Asunto(s)
Antígeno CD47 , Inflamación , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones Endogámicos C57BL , Trombomodulina , Animales , Masculino , Ratones , Antígeno CD47/inmunología , Antígeno CD47/metabolismo , Inflamación/inmunología , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Estreptavidina
2.
Cancer Immunol Immunother ; 72(11): 3567-3579, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605009

RESUMEN

Immunotherapy utilizing checkpoint inhibitors has shown remarkable success in the treatment of cancers. In addition to immune checkpoint inhibitors, immune co-stimulation has the potential to enhance immune activation and destabilize the immunosuppressive tumor microenvironment. CD137, also known as 4-1BB, is one of the potent immune costimulatory receptors that could be targeted for effective immune co-stimulation. The interaction of the 4-1BB receptor with its natural ligand (4-1BBL) generates a strong costimulatory signal for T cell proliferation and survival. 4-1BBL lacks costimulatory activity in soluble form. To obtain co-stimulatory activity in soluble form, a recombinant 4-1BBL protein was generated by fusing the extracellular domains of murine 4-1BBL to a modified version of streptavidin (SA-4-1BBL). Treatment with SA-4-1BBL inhibited the development of lung tumors in A/J mice induced by weekly injections of the tobacco carcinogen NNK for eight weeks. The inhibition was dependent on the presence of T cells and NK cells; depletion of these cells diminished the SA-4-1BBL antitumor protective effect. The number of lung tumor nodules was significantly reduced by the administration of SA-4-1BBL to mice during ongoing exposure to NNK. The data presented in this paper suggest that utilizing an immune checkpoint stimulator as a single agent generate a protective immune response against lung cancer in the presence of a carcinogen. More broadly, this study suggests that immune checkpoint stimulation can be extended to a number of other cancer types, including breast and prostate cancers, for which improved diagnostics can detect disease at the preneoplastic stage.


Asunto(s)
Neoplasias Pulmonares , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Ratones , Animales , Carcinógenos/toxicidad , Linfocitos T , Ligando 4-1BB , Proteínas Recombinantes , Neoplasias Pulmonares/inducido químicamente , Microambiente Tumoral
3.
Am J Transplant ; 23(5): 619-628, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36863480

RESUMEN

The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1ß, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Ratones , Proteína C , Trombomodulina , Trasplante Homólogo
4.
J Biomed Mater Res A ; 110(11): 1728-1737, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35841329

RESUMEN

Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing ß-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Aloinjertos , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Granzimas/metabolismo , Humanos , Hidrogeles/metabolismo , Hidrogeles/farmacología , Insulina/metabolismo , Interleucina-2/metabolismo , Interleucina-2/farmacología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/patología
5.
Sci Adv ; 8(19): eabm9881, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559682

RESUMEN

Islet transplantation to treat insulin-dependent diabetes is greatly limited by the need for maintenance immunosuppression. We report a strategy through which cotransplantation of allogeneic islets and streptavidin (SA)-FasL-presenting microgels to the omentum under transient rapamycin monotherapy resulted in robust glycemic control, sustained C-peptide levels, and graft survival in diabetic nonhuman primates for >6 months. Surgical extraction of the graft resulted in prompt hyperglycemia. In contrast, animals receiving microgels without SA-FasL under the same rapamycin regimen rejected islet grafts acutely. Graft survival was associated with increased number of FoxP3+ cells in the graft site with no significant changes in T cell systemic frequencies or responses to donor and third-party antigens, indicating localized tolerance. Recipients of SA-FasL microgels exhibited normal liver and kidney metabolic function, demonstrating safety. This localized immunomodulatory strategy succeeded with unmodified islets and does not require long-term immunosuppression, showing translational potential in ß cell replacement for treating type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Microgeles , Aloinjertos/metabolismo , Animales , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Primates , Sirolimus , Estreptavidina
6.
PLoS One ; 7(11): e48463, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144888

RESUMEN

Subunit vaccines containing universal tumor associated antigens (TAAs) present an attractive treatment modality for cancer primarily due to their safety and potential to generate long-term immunological responses that can safeguard against recurrences. However, TAA-based subunit vaccines require potent adjuvants for therapeutic efficacy. Using a novel form of the 4-1BBL costimulatory molecule, SA-4-1BBL, as the adjuvant of choice, we previously demonstrated that a single vaccination with survivin (SVN) as a bona fide self TAA was effective in eradicating weakly immunogenic 3LL tumors in >70% of C57BL/6 mice. The present study was designed to i) assess the therapeutic efficacy of a prime-boost vaccination and ii) investigate the mechanistic basis of vaccine efficacy. Our data shows that a prime-boost vaccination strategy was effective in eradicating 3LL lung carcinoma in 100% of mice. The vaccine efficacy was correlated with increased percentages of CD8(+) T cells expressing IFN-γ as well as potent killing responses of both CD8(+) T and NK cells in the absence of detectable antibodies to ssDNA as a sign of autoimmunity. Antibody depletion of CD8(+) T cells one day before vaccination completely abrogated therapeutic efficacy, whereas depletion of CD4(+) T cells had no effect. Importantly, NK cell depletion had a moderate (∼50% reduction), but significant (p<0.05) effect on vaccine efficacy. Taken together, these results shed light on the mechanistic basis of the SA-4-1BBL/SVN subunit vaccine formulation in a lung carcinoma model and demonstrate the robust therapeutic efficacy of the prime-boost immunization strategy with important clinical implications.


Asunto(s)
Ligando 4-1BB/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunización Secundaria , Proteínas Inhibidoras de la Apoptosis/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/prevención & control , Proteínas Represoras/inmunología , Animales , Autoanticuerpos/inmunología , Vacunas contra el Cáncer/inmunología , ADN de Neoplasias/inmunología , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Survivin , Resultado del Tratamiento , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...