Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1811(10): 565-77, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21801852

RESUMEN

Bioactive N-acylethanolamines include anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory), and N-oleoylethanolamine (an anorexic). In the brain, these molecules are formed from N-acylphosphatidylethanolamines (NAPEs) by a specific phospholipase D, called NAPE-PLD, or through NAPE-PLD-independent multi-step pathways, as illustrated in the current study employing NAPE-PLD-deficient mice. Although N-acylethanolamine plasmalogen (1-alkenyl-2-acyl-glycero-3-phospho(N-acyl)ethanolamine, pNAPE) is presumably a major class of N-acylethanolamine phospholipids in the brain, its enzymatic conversion to N-acylethanolamines is poorly understood. In the present study, we focused on the formation of N-acylethanolamines from pNAPEs. While recombinant NAPE-PLD catalyzed direct release of N-palmitoylethanolamine from N-palmitoylethanolamine plasmalogen, the same reaction occurred in the brain homogenate of NAPE-PLD-deficient mice, suggesting that this reaction occurs through both the NAPE-PLD-dependent and -independent pathways. Liquid chromatography-mass spectrometry revealed a remarkable accumulation of 1-alkenyl-2-hydroxy-glycero-3-phospho(N-acyl)ethanolamines (lyso pNAPEs) in the brain of NAPE-PLD-deficient mice. We also found that brain homogenate formed N-palmitoylethanolamine, N-oleoylethanolamine, and anandamide from their corresponding lyso pNAPEs by a Mg(2+)-dependent "lysophospholipase D". Moreover, the brain levels of alkenyl-type lysophosphatidic acids, the other products from lyso pNAPEs by lysophospholipase D, also increased in NAPE-PLD-deficient mice. Glycerophosphodiesterase GDE1 can hydrolyze glycerophospho-N-acylethanolamines to N-acylethanolamines in the brain. In addition, we discovered that recombinant GDE1 has a weak activity to generate N-palmitoylethanolamine from its corresponding lyso pNAPE, suggesting that this enzyme is at least in part responsible for the lysophospholipase D activity. These results strongly suggest that brain tissue N-acylethanolamines, including anandamide, can be formed from N-acylated plasmalogen through an NAPE-PLD-independent pathway as well as by their direct release via NAPE-PLD.


Asunto(s)
Etanolaminas/metabolismo , Fosfolipasa D/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Endocannabinoides , Masculino , Ratones , Ratones Mutantes , Modelos Biológicos , Ácidos Oléicos , Plasmalógenos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Transducción de Señal
2.
Br J Pharmacol ; 163(7): 1329-43, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21545414

RESUMEN

This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Agonistas de Receptores de Cannabinoides , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Glicéridos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Receptores de Cannabinoides/metabolismo , Animales , Humanos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...