Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 828400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677429

RESUMEN

Change in the energy metabolism of cancer cells, which display significant differences compared to normal cells, is a rising phenomenon in developing new therapeutic approaches against cancers. One of the metabolic enzymes, hexokinase-II (HK-II) is involved in glycolysis, and inhibiting the HK-II activity may be a potential metabolic target for cancer therapy as most of the drugs in clinical use act on DNA damage. Methyl jasmonate (MJ) is one of the compounds blocking HK-II activity in cancer cells. In a previous study, we showed that the novel MJ analogs inhibit HK-II activity through VDAC detachment from the mitochondria. In this study, to evaluate the potential of targeting HK-2 activity, through patient cohort analysis, we first determined HK-2 expression levels and prognostic significance in highly lethal glioblastoma (GBM) brain tumor. We then examined the in vitro therapeutic effects of the novel analogs in the GBM cells. Here, we report that, among all, compound-10 (C-10) showed significant in vitro therapeutic efficacy as compared to MJ which is in use for preclinical and clinical studies. Afterward, we analyzed cell death triggered by C-10 in two different GBM cell lines. We found that C-10 treatment increased the apoptotic/necrotic cells and autophagy in GBM cells. The newly developed analog, C-10, was found to be lethal against GBM by the activation of cell death authorities, mostly in a necrotic and autophagic fashion at the early stages of the treatment. Considering that possibly decreased intracellular ATP levels by C-10 mediated inhibition of HK-2 activity and disabled VDAC interaction, a more detailed analysis of HK-2 inhibition-mediated cell death can provide a deep understanding of the mechanism of action on the oncosis/necroptosis axis. These findings provide an option to design clinically relevant and effective novel HK-II inhibitors and suggest novel MJ analogs to further study them as potential anticancer agents against GBM.

2.
J Mol Graph Model ; 113: 108160, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35248814

RESUMEN

Glioblastoma Multiforme (GBM) is the most aggressive brain tumor and classified as one of the deadliest cancers. The current treatment plans for GBM remains to be ineffective because of its rapid progress and inability of the drugs used to cross the blood-brain barrier (BBB). Thus, developing more effective and potent medicines for GBM are needed. There have been several reports demonstrating that CAPE presents reasonably good anti-cancer activity in certain cancer cell lines and can penetrate the blood-brain barrier. Accordingly, in this study we synthesized several novel CAPE analogs with the addition of more druggable handles and solubilizing entities and subsequently evaluated their in vitro therapeutic efficacies in GBM cell lines (T98G and LN229). The most potent compound was then examined extensively and results showed that the 50 µM novel CAPE analog (compound 10) significantly decreases the viability of both T98G and LN229 GBM cells as compared to CAPE itself. Moreover, the compound 10 was not cytotoxic to healthy human cells (fibroblast-like mesenchymal stem cells) at the same concentration. Apoptotic (32.8%, and 44.6%) cell populations were detected in the compound 10 treated groups for LN229 and T98G, respectively. As an indication of apotosis, significantly increased PARP cleavage was detected in compound 10 versus CAPE treated LN229. In addition, we conducted molecular docking and molecular dynamics (MD) simulations studies on certain targets playing roles on GBM disease pathway such as NF-κB, EGFR, TNF-α, ERK2, PAPR1, hCA IX and hCA XII. Our findings demonstrated that designed CAPE analogs have anti-cancer activity on GBM cells and in silico studies also demonstrate the inhibitory ability of suggested compounds via interactions with critical residues in binding pockets of studied targets. Here, we suggest the novel CAPE analog to study further against GBM. Therefore, identification of the compound related molecular signature may provide more to understand the mechanism of action.


Asunto(s)
Glioblastoma , Ácidos Cafeicos , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Simulación del Acoplamiento Molecular , Alcohol Feniletílico/análogos & derivados
3.
Cells ; 11(3)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159275

RESUMEN

The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) are currently utilized in clinics for pulmonary inflammatory diseases, including acute respiratory distress syndrome and acute lung injury. Given that MSCs offer a promising treatment against COVID-19, they are being used against COVID-19 in more than 70 clinical trials with promising findings. Genetically engineered MSCs offer promising therapeutic options in pulmonary diseases. However, their potential has not been explored yet. In this review, we provide perspectives on the functionally modified MSCs that can be developed and harnessed for COVID-19 therapy. Options to manage the SARS-CoV-2 infection and its variants using various bioengineering tools to increase the therapeutic efficacy of MSCs are highlighted.


Asunto(s)
Bioingeniería/métodos , COVID-19/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/virología , Citocinas/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Células Madre Mesenquimatosas/citología , Pandemias/prevención & control , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Resultado del Tratamiento
4.
Anticancer Res ; 41(7): 3471-3480, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230142

RESUMEN

BACKGROUND/AIM: Pseudomonas exotoxin (PE) is one of the most widely used toxins in the construction of therapeutic fusion proteins in pre-clinical studies followed by phase trials. In principle, PE acts by blocking protein synthesis through catalyzing the inactivation of elongation factor-2 (EF-2). The interleukin-13 fused PE (IL13-PE) cytotoxin was previously designed to target GBM cells. In this study, the cytotoxic effects of IL13-PE were evaluated in 5 different types of cancers and the therapeutic effects were further analyzed in a lung cancer cell line, NCI-H460. Conceptually, in another lung cancer cell line (A549), IL13Rα2 was overexpressed by lentiviruses (A549-IL13Rα2) and evaluated for cytotoxic efficacy of IL13-PE. MATERIALS AND METHODS: The expression profile of IL13Rα2 in different cancer cell lines was determined by RT-PCR. Secretable toxin fusion was expressed in the toxin resistant HEK-293T cell line (293T-TxR) by using a plasmid coding for IL13-PE and IRES-GFP (LV-IL13-PE-IRES/GFP). Next, the cells were shown to produce and secrete functional IL13-PE by dot blot analysis, followed by cell viability assays and cell death analysis. RESULTS: Upon treatment with IL13-PE, a significant decrease in cell viability was selectively demonstrated in cancer cells with cognate receptor expression. IL13-PE treatment increased the apoptotic/necrotic cell populations in the NCI-H460 cell line. CONCLUSION: Our results demonstrate that IL13-PE can be a therapeutic target for tumors bearing mostly IL13Rα2 positive cell populations. Our findings also suggest a cell-based delivery option for the recombinant toxins in the treatment of different cancers which can provide a solution for the clinical use of toxin therapy.


Asunto(s)
Exotoxinas/farmacología , Inmunotoxinas/farmacología , Neoplasias/tratamiento farmacológico , Pseudomonas/metabolismo , Células A549 , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Interleucina-13/metabolismo , Neoplasias/metabolismo , Proteínas Recombinantes de Fusión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA