Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neurology ; 101(7 Suppl 1): S82-S91, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580151

RESUMEN

BACKGROUND AND OBJECTIVES: As detailed throughout this special issue, the National Institute of Neurological Disorders and Stroke (NINDS) recently undertook a strategic planning effort to guide the Institute's efforts and priorities in health disparities and health equity (HD/HE) research. One input into this effort was to conduct a 5-year longitudinal, in-depth analysis of NINDS-supported HD/HE research newly funded between the years 2016 and 2020. The goals of this analysis were to describe NINDS's portfolio according to consistent, contemporary definitions and HD/HE disciplinary theory. This required the development of a novel, systematic, and validated analysis protocol. The portfolio analysis was designed to inform the recommendations of an expert working group convened by the NINDS and internal efforts to support high-priority research, training, and infrastructure efforts. METHODS: NINDS staff developed and validated this HD/HE research portfolio analysis protocol. Ultimately, HD/HE projects were characterized by their disease focus, populations of study, the health equity determinant(s) addressed, and the type and phase of research being conducted. For all interventional research, there was further assessment of the type and setting of intervention delivery as well as utilization of evidence-based community engagement and intervention sustainability approaches. RESULTS: A total of 58 new HD/HE research projects were funded from 2016 to 2020. The results of the descriptive analysis described here help provide a holistic picture of NINDS's HD/HE research portfolio, revealing strengths and gaps in the portfolio as well as opportunities ripe for future investment. DISCUSSION: NINDS developed a standardized HD/HE research categorization methodology with imbedded quality control checks that is intended to be transparent, accurate, and reproducible. The results of this HD/HE research portfolio analysis will serve as a baseline from which to assess the success of NINDS's research investments going forward.


Asunto(s)
Investigación Biomédica , Equidad en Salud , Estados Unidos , Humanos , National Institute of Neurological Disorders and Stroke (U.S.) , Reproducibilidad de los Resultados , Proyectos de Investigación
2.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724785

RESUMEN

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TOR
3.
Nat Commun ; 13(1): 4836, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977929

RESUMEN

The mechanistic target of rapamycin (mTOR) signals through the mTOR complex 1 (mTORC1) and the mTOR complex 2 to maintain cellular and organismal homeostasis. Failure to finely tune mTOR activity results in metabolic dysregulation and disease. While there is substantial understanding of the molecular events leading mTORC1 activation at the lysosome, remarkably little is known about what terminates mTORC1 signaling. Here, we show that the AAA + ATPase Thorase directly binds mTOR, thereby orchestrating the disassembly and inactivation of mTORC1. Thorase disrupts the association of mTOR to Raptor at the mitochondria-lysosome interface and this action is sensitive to amino acids. Lack of Thorase causes accumulation of mTOR-Raptor complexes and altered mTORC1 disassembly/re-assembly dynamics upon changes in amino acid availability. The resulting excessive mTORC1 can be counteracted with rapamycin in vitro and in vivo. Collectively, we reveal Thorase as a key component of the mTOR pathway that disassembles and thus inhibits mTORC1.


Asunto(s)
Aminoácidos , Serina-Treonina Quinasas TOR , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Aminoácidos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Proteína Reguladora Asociada a mTOR/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
4.
Cell ; 185(11): 1943-1959.e21, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35545089

RESUMEN

Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Endonucleasas/metabolismo , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
5.
Mol Psychiatry ; 26(12): 7498-7508, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535765

RESUMEN

Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.


Asunto(s)
Trastorno Autístico , Epilepsia , Discapacidad Intelectual , Anciano , Trastorno Autístico/genética , Niño , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Neuronas/metabolismo , Transmisión Sináptica/genética
6.
Sci Transl Med ; 13(604)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321320

RESUMEN

Accumulation of the parkin-interacting substrate (PARIS; ZNF746), due to inactivation of parkin, contributes to Parkinson's disease (PD) through repression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; PPARGC1A) activity. Here, we identify farnesol as an inhibitor of PARIS. Farnesol promoted the farnesylation of PARIS, preventing its repression of PGC-1α via decreasing PARIS occupancy on the PPARGC1A promoter. Farnesol prevented dopaminergic neuronal loss and behavioral deficits via farnesylation of PARIS in PARIS transgenic mice, ventral midbrain transduction of AAV-PARIS, adult conditional parkin KO mice, and the α-synuclein preformed fibril model of sporadic PD. PARIS farnesylation is decreased in the substantia nigra of patients with PD, suggesting that reduced farnesylation of PARIS may play a role in PD. Thus, farnesol may be beneficial in the treatment of PD by enhancing the farnesylation of PARIS and restoring PGC-1α activity.


Asunto(s)
Enfermedad de Parkinson , Animales , Dopamina , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Prenilación , Proteínas Represoras/metabolismo , Sustancia Negra/metabolismo
7.
J Neurosci ; 41(25): 5338-5349, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162747

RESUMEN

Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.


Asunto(s)
COVID-19/complicaciones , Enfermedades del Sistema Nervioso/virología , Neuronas/virología , Animales , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Humanos , Mitocondrias/metabolismo , Mitocondrias/virología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , SARS-CoV-2/patogenicidad , Serina-Treonina Quinasas TOR/metabolismo , Síndrome Post Agudo de COVID-19 , Tratamiento Farmacológico de COVID-19
8.
Cell Rep ; 33(5): 108329, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147468

RESUMEN

The regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking affects multiple brain functions, such as learning and memory. We have previously shown that Thorase plays an important role in the internalization of AMPARs from the synaptic membrane. Here, we show that N-methyl-d-aspartate receptor (NMDAR) activation leads to increased S-nitrosylation of Thorase and N-ethylmaleimide-sensitive factor (NSF). S-nitrosylation of Thorase stabilizes Thorase-AMPAR complexes and enhances the internalization of AMPAR and interaction with protein-interacting C kinase 1 (PICK1). S-nitrosylated NSF is dependent on the S-nitrosylation of Thorase via trans-nitrosylation, which modulates the surface insertion of AMPARs. In the presence of the S-nitrosylation-deficient C137L Thorase mutant, AMPAR trafficking, long-term potentiation, and long-term depression are impaired. Overall, our data suggest that both S-nitrosylation and interactions of Thorase and NSF/PICK1 are required to modulate AMPAR-mediated synaptic plasticity. This study provides critical information that elucidates the mechanism underlying Thorase and NSF-mediated trafficking of AMPAR complexes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Membrana Celular/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Receptores AMPA/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Cisteína/metabolismo , Endocitosis/efectos de los fármacos , Glutatión/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/farmacología , Plasticidad Neuronal , Óxido Nítrico/metabolismo , Nitrosación , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , S-Nitrosoglutatión/metabolismo
9.
JCI Insight ; 4(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31527314

RESUMEN

Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called MSS51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, ß-oxidation, glycolysis, and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51-KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51-KO mice showed an increased oxygen consumption rate compared with WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid ß-oxidation were enhanced in skeletal muscle of Mss51-KO mice compared with that of WT mice. We found that mice lacking Mss51 and challenged with a high-fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid ß-oxidation. These findings demonstrate that MSS51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Proteínas Mitocondriales/deficiencia , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Factores de Transcripción/deficiencia , Animales , Sistemas CRISPR-Cas/genética , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Insulina , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Fibras Musculares Esqueléticas/citología , Obesidad/etiología , Obesidad/genética , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno , Factores de Transcripción/genética , Aumento de Peso , Dedos de Zinc
10.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234416

RESUMEN

Mutations in IQSEC2 cause intellectual disability (ID), which is often accompanied by seizures and autism. A number of studies have shown that IQSEC2 is an abundant protein in excitatory synapses and plays an important role in neuronal development as well as synaptic plasticity. Here, we review neuronal IQSEC2 signaling with emphasis on those aspects likely to be involved in autism. IQSEC2 is normally bound to N-methyl-D-aspartate (NMDA)-type glutamate receptors via post synaptic density protein 95 (PSD-95). Activation of NMDA receptors results in calcium ion influx and binding to calmodulin present on the IQSEC2 IQ domain. Calcium/calmodulin induces a conformational change in IQSEC2 leading to activation of the SEC7 catalytic domain. GTP is exchanged for GDP on ADP ribosylation factor 6 (ARF6). Activated ARF6 promotes downregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors through a c-jun N terminal kinase (JNK)-mediated pathway. NMDA receptors, AMPA receptors, and PSD-95 are all known to be adversely affected in autism. An IQSEC2 transgenic mouse carrying a constitutively active mutation (A350V) shows autistic features and reduced levels of surface AMPA receptor subunit GluA2. Sec7 activity and AMPA receptor recycling are presented as two targets, which may respond to drug treatment in IQSEC2-associated ID and autism.


Asunto(s)
Trastorno Autístico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Discapacidad Intelectual/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Factores de Intercambio de Guanina Nucleótido/análisis , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Front Mol Neurosci ; 12: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842726

RESUMEN

We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.

12.
J Cereb Blood Flow Metab ; 39(9): 1836-1848, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29658368

RESUMEN

Neuronal preconditioning in vitro or in vivo with a stressful but non-lethal stimulus leads to new protein expression that mediates a profound neuroprotection against glutamate excitotoxicity and experimental stroke. The proteins that mediate neuroprotection are relatively unknown and under discovery. Here we find that the expression of the AAA + ATPase Thorase is induced by preconditioning stimulation both in vitro and in vivo. Thorase provides neuroprotection in an ATP-dependent manner against oxygen-glucose deprivation (OGD) neurotoxicity or glutamate N-Methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity in vitro. Knock-down of Thorase prevents the establishment of preconditioning induced neuroprotection against OGD or NMDA neurotoxicity. Transgenic overexpression of Thorase provides neuroprotection in vivo against middle cerebral artery occlusion (MCAO)-induced stroke in mice, while genetic deletion of Thorase results in increased injury in vivo following stroke. These results define Thorase as a neuroprotective protein and understanding Thorase signaling could offer a new therapeutic strategy for the treatment of neurologic disorders.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Células Cultivadas , Femenino , Eliminación de Gen , Glucosa/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Precondicionamiento Isquémico , Masculino , Ratones , Neuronas/metabolismo , Neuroprotección , Oxígeno/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Regulación hacia Arriba
13.
Science ; 362(6414)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385548

RESUMEN

The pathologic accumulation and aggregation of α-synuclein (α-syn) underlies Parkinson's disease (PD). The molecular mechanisms by which pathologic α-syn causes neurodegeneration in PD are not known. Here, we found that pathologic α-syn activates poly(adenosine 5'-diphosphate-ribose) (PAR) polymerase-1 (PARP-1), and PAR generation accelerates the formation of pathologic α-syn, resulting in cell death via parthanatos. PARP inhibitors or genetic deletion of PARP-1 prevented pathologic α-syn toxicity. In a feed-forward loop, PAR converted pathologic α-syn to a more toxic strain. PAR levels were increased in the cerebrospinal fluid and brains of patients with PD, suggesting that PARP activation plays a role in PD pathogenesis. Thus, strategies aimed at inhibiting PARP-1 activation could hold promise as a disease-modifying therapy to prevent the loss of dopamine neurons in PD.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , alfa-Sinucleína/metabolismo , Animales , Bencimidazoles/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Muerte Celular , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Activación Enzimática , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
15.
Brain ; 141(3): 651-661, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390050

RESUMEN

Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ domain containing 1-protein Thorase plays an important role in the function and integrity of mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of excitatory, glutamatergic AMPA receptors by disassembling complexes between the AMPA receptor-binding protein, GRIP1, and the AMPA receptor subunit GluA2. Using whole-exome sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 [c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular analyses show that the C-terminal end of Thorase mutant gained a novel function that strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, peroxisomal and mitochondrial proteins and affects disassembly of GluA2 and Thorase oligomer complexes. Atad1-/- neurons expressing Thorase mutantHis357Argfs*15 display reduced amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the recycling back and/or reinsertion of AMPA receptors to the plasma membrane. Taken together, our molecular and functional analyses identify an activating ATAD1 mutation as a new cause of severe encephalopathy and congenital stiffness.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Encefalopatías/genética , Regulación de la Expresión Génica/genética , Mutación/genética , Neuronas/patología , Receptores AMPA/metabolismo , Adenosina Trifosfatasas/metabolismo , Encefalopatías/diagnóstico por imagen , Encefalopatías/patología , Proteínas Portadoras/metabolismo , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Homocigoto , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mitocondrias/genética , Mitocondrias/patología , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Consumo de Oxígeno/genética , Transporte de Proteínas/genética , ARN Mensajero/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(4): 798-803, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311330

RESUMEN

Accumulating evidence suggests that α-synuclein (α-syn) occurs physiologically as a helically folded tetramer that resists aggregation. However, the mechanisms underlying the regulation of formation of α-syn tetramers are still mostly unknown. Cellular membrane lipids are thought to play an important role in the regulation of α-syn tetramer formation. Since glucocerebrosidase 1 (GBA1) deficiency contributes to the aggregation of α-syn and leads to changes in neuronal glycosphingolipids (GSLs) including gangliosides, we hypothesized that GBA1 deficiency may affect the formation of α-syn tetramers. Here, we show that accumulation of GSLs due to GBA1 deficiency decreases α-syn tetramers and related multimers and increases α-syn monomers in CRISPR-GBA1 knockout (KO) SH-SY5Y cells. Moreover, α-syn tetramers and related multimers are decreased in N370S GBA1 Parkinson's disease (PD) induced pluripotent stem cell (iPSC)-derived human dopaminergic (hDA) neurons and murine neurons carrying the heterozygous L444P GBA1 mutation. Treatment with miglustat to reduce GSL accumulation and overexpression of GBA1 to augment GBA1 activity reverse the destabilization of α-syn tetramers and protect against α-syn preformed fibril-induced toxicity in hDA neurons. Taken together, these studies provide mechanistic insights into how GBA1 regulates the transition from monomeric α-syn to α-syn tetramers and multimers and suggest unique therapeutic opportunities for PD and dementia with Lewy bodies.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Glucosilceramidasa/deficiencia , Glicoesfingolípidos/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , 1-Desoxinojirimicina/análogos & derivados , Línea Celular Tumoral , Glucosilceramidasa/genética , Humanos , Multimerización de Proteína
17.
Sci Transl Med ; 9(420)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29237760

RESUMEN

The AAA+ adenosine triphosphatase (ATPase) Thorase plays a critical role in controlling synaptic plasticity by regulating the expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Bidirectional sequencing of exons of ATAD1, the gene encoding Thorase, in a cohort of patients with schizophrenia and healthy controls revealed rare Thorase variants. These variants caused defects in glutamatergic signaling by impairing AMPAR internalization and recycling in mouse primary cortical neurons. This contributed to increased surface expression of the AMPAR subunit GluA2 and enhanced synaptic transmission. Heterozygous Thorase-deficient mice engineered to express these Thorase variants showed altered synaptic transmission and several behavioral deficits compared to heterozygous Thorase-deficient mice expressing wild-type Thorase. These behavioral impairments were rescued by the competitive AMPAR antagonist Perampanel, a U.S. Food and Drug Administration-approved drug. These findings suggest that Perampanel may be useful for treating disorders involving compromised AMPAR-mediated glutamatergic neurotransmission.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Variación Genética , Glutamatos/metabolismo , Piridonas/farmacología , Transmisión Sináptica/efectos de los fármacos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Conducta Animal , Células Cultivadas , Corteza Cerebral/patología , Endocitosis/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Heterocigoto , Humanos , Memoria/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrilos , Multimerización de Proteína , Conducta Social
18.
Neurol Genet ; 3(1): e130, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28180185

RESUMEN

OBJECTIVE: ATAD1 encodes Thorase, a mediator of α-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor recycling; in this work, we characterized the phenotype resulting from ATAD1 mutations and developed a targeted therapy in both mice and humans. METHODS: Using exome sequencing, we identified a novel ATAD1 mutation (p.E276X) as the etiology of a devastating neurologic disorder characterized by hypertonia, seizures, and death in a consanguineous family. We postulated that pathogenesis was a result of excessive AMPA receptor activity and designed a targeted therapeutic approach using perampanel, an AMPA-receptor antagonist. RESULTS: Perampanel therapy in ATAD1 knockout mice reversed behavioral defects, normalized brain MRI abnormalities, prevented seizures, and prolonged survival. The ATAD1 patients treated with perampanel showed improvement in hypertonicity and resolution of seizures. CONCLUSIONS: This work demonstrates that identification of novel monogenic neurologic disorders and observation of response to targeted therapeutics can provide important insights into human nervous system functioning.

19.
Cell Rep ; 18(4): 918-932, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28122242

RESUMEN

Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Neuronas Dopaminérgicas/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
20.
Neuron ; 93(2): 425-440, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28103482

RESUMEN

Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT+ neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT+ neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Miedo , Plasticidad Neuronal/fisiología , Estrés Psicológico , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Conducta Animal , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Técnicas de Inactivación de Genes , Captura por Microdisección con Láser , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Técnicas de Placa-Clamp , Receptores AMPA/metabolismo , Área Tegmental Ventral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA