Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(46): 44044-44056, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027367

RESUMEN

Binary and ternary composites of BiOI with NH2-MIL-101(Fe) and a functionalized biochar were synthesized through an in situ approach, aimed at spurring the activity of the semiconductor as a photocatalyst for the removal of ciprofloxacin (CIP) from water. Experimental outcomes showed a drastic enhancement of the adsorption and the equilibrium (which increased from 39.31 mg g-1 of bare BiOI to 76.39 mg g-1 of the best ternary composite in 2 h time), while the kinetics of the process was not significantly changed. The photocatalytic performance was also significantly enhanced, and the complete removal of 10 ppm of CIP in 3 h reaction time was recorded under simulated solar light irradiation for the best catalyst of the investigated batch. Catalytic reactions supported by different materials obeyed different reaction orders, indicating the existence of different mechanisms. The use of scavengers for superoxide anion radicals, holes, and hydroxyl radicals showed that although all these species are involved in CIP photodegradation, the latter play the most crucial role, as also confirmed by carrying out the reaction at increasing pH conditions. A clear correlation between the reduction of BiOI crystallite sizes in the composites, as compared to the bare material, and the material performance as both adsorbers and photocatalyst was identified.

2.
ACS Omega ; 6(49): 34115-34128, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34926959

RESUMEN

Biomass char produced from pyrolysis processes is of great interest to be utilized as renewable solid fuels or materials. Forest byproducts and agricultural wastes are low-cost and sustainable biomass feedstocks. These biomasses generally contain high amounts of ash-forming elements, generally leading to high char reactivity. This study elaborates in detail how chemical and physical properties affect CO2 gasification rates of high-ash biomass char, and it also targets the interactions between these properties. Char produced from pine bark, forest residue, and corncobs (particle size 4-30 mm) were included, and all contained different relative compositions of ash-forming elements. Acid leaching was applied to further investigate the influence of inorganic elements in these biomasses. The char properties relevant to the gasification rate were analyzed, that is, elemental composition, specific surface area, and carbon structure. Gasification rates were measured at an isothermal condition of 800 °C with 20% (vol.) of CO2 in N2. The results showed that the inorganic content, particularly K, had a stronger effect on gasification reactivity than specific surface area and aromatic cluster size of the char. At the gasification condition utilized in this study, K could volatilize and mobilize through the char surface, resulting in high gasification reactivity. Meanwhile, the mobilization of Ca did not occur at the low temperature applied, thus resulting in its low catalytic effect. This implies that the dispersion of these inorganic elements through char particles is an important reason behind their catalytic activity. Upon leaching by diluted acetic acid, the K content of these biomasses substantially decreased, while most of the Ca remained in the biomasses. With a low K content in leached biomass char, char reactivity was determined by the active carbon surface area.

3.
Bioresour Technol ; 101(11): 4187-92, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20144863

RESUMEN

A simple expression for the apparent reaction rate of large wood char gasification with steam is proposed. Large char samples were gasified under steam atmosphere using a thermo-balance reactor. The apparent reaction rate was expressed as the product of the intrinsic rate and the effective factor. The effective factor was modified to include the effect of change in char diameter and intrinsic reaction rate during the reaction. Assuming uniform conversion ratio throughout a particle, the simplified reaction scheme was divided into three stages. In the initial stage, the local conversion ratio increases without particle shrinkage. In the middle stage, the particle shrinks following the shrinking core model without change in the local conversion ratio. In the final stage, the local conversion ratio increases without particle shrinkage. The validity of the modified effective value was confirmed by comparison with experimental results.


Asunto(s)
Gases , Vapor , Madera , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA