Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37509835

RESUMEN

Papaya fruit has a limited shelf life due to its sensitivity to decay and chilling damage during cold storage. The application of methyl jasmonate (MeJA) is known to reduce the incidence of disease and chilling injury, and to maintain the overall quality of the papaya fruit when stored at low temperature. Consequently, the effects of postharvest MeJA (1 mM) immersion on papaya fruits during low-temperature storage (10 °C ± 2 °C) for 28 days were studied. The experiment revealed that MeJA treatment significantly decreased the papaya fruit's weight loss, disease incidence, and chilling injury index. Furthermore, the accumulation of malondialdehyde and hydrogen peroxide was markedly lower after the application of MeJA. In addition, MeJA treatment exhibited significantly higher total phenols, ascorbic acid, antioxidant activity, and titratable acidity in contrast to the control. Similarly, MeJA-treated papaya fruits showed higher antioxidant enzymatic activity (superoxide dismutase, catalase, and peroxidase enzymes) with respect to the control fruits. In addition, MeJA reduced the soluble solids content, ripening index, pH, and sugar contents compared to the control fruits. Furthermore, MeJA-treated papaya fruit exhibited higher sensory and organoleptic quality attributes with respect to untreated papaya fruits. These findings suggested that postharvest MeJA application might be a useful approach for attenuating disease incidence and preventing chilling injury by enhancing antioxidant activities along with enhanced overall quality of papaya fruits during low-temperature storage.

2.
Front Plant Sci ; 13: 1039373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561448

RESUMEN

Introduction: Exogenous melatonin (EMT) application has been used to reduce postharvest senescence and improve the quality and antioxidant enzyme activities of papaya fruits during cold storage. Methods: The effects of exogenous melatonin application (1. 5 mM) were investigated on papaya fruits during cold storage (10°C ± 2°C) for 28 days in the present study. Results and discussion: The EMT treatment delayed postharvest senescence significantly with lower maturing status compared with untreated papaya fruits (control). In addition, EMT treatment maintained substantially higher titratable acidity values and ascorbic acid content but significantly lower soluble solids content and lower weight loss compared with the untreated fruits. Concerning the antioxidant capacity, the EMT-treated papaya fruit exhibited markedly higher total phenolic content and, consequently, higher DPPH-radical scavenging activity than the control group. The EMT treatment not only kept a higher enzyme activity of superoxide dismutase, peroxidase, and catalase but also significantly inhibited the accumulation of hydrogen peroxide and malondialdehyde, along with satisfying sensory attributes. Conclusion: The findings of this study indicated that EMT application could be commercially used as an eco-friendly strategy to reduce postharvest senescence and maintain the fresh-like quality traits of papaya fruit during cold storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA