Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 94(1): 27-38, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26172557

RESUMEN

In rodent models of traumatic brain injury (TBI), both Interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNFα) levels increase early after injury to return later to basal levels. We have developed and characterized a rat mild fluid percussion model of TBI (mLFP injury) that results in righting reflex response times (RRRTs) that are less than those characteristic of moderate to severe LFP injury and yet increase IL-1α/ß and TNFα levels. Here we report that blockade of IL-1α/ß and TNFα binding to IL-1R and TNFR1, respectively, reduced neuropathology in parietal cortex, hippocampus, and thalamus and improved outcome. IL-1ß binding to the type I IL-1 receptor (IL-1R1) can be blocked by a recombinant form of the endogenous IL-1R antagonist IL-1Ra (Kineret). TNFα binding to the TNF receptor (TNFR) can be blocked by the recombinant fusion protein etanercept, made up of a TNFR2 peptide fused to an Fc portion of human IgG1. There was no benefit from the combined blockades compared with individual blockades or after repeated treatments for 11 days after injury compared with one treatment at 1 hr after injury, when measured at 6 hr or 18 days, based on changes in neuropathology. There was also no further enhancement of blockade benefits after 18 days. Given that both Kineret and etanercept given singly or in combination showed similar beneficial effects and that TNFα also has a gliotransmitter role regulating AMPA receptor traffic, thus confounding effects of a TNFα blockade, we chose to focus on a single treatment with Kineret.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Receptores de Citocinas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Lesiones Encefálicas/patología , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Etanercept/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Actividad Motora/efectos de los fármacos , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos , Reflejo/fisiología , Factores de Tiempo
2.
J Neurosci Res ; 93(4): 549-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25410497

RESUMEN

One of the criteria defining mild traumatic brain injury (mTBI) in humans is a loss of consciousness lasting for less than 30 min. mTBI can result in long-term impairment of cognition and behavior. In rats, the length of time it takes a rat to right itself after injury is considered to be an analog for human return to consciousness. This study characterized a rat mild brain blast injury (mBBI) model defined by a righting response reflex time (RRRT) of more than 4 min but less than 10 min. Assessments of motor coordination relying on beam-balance and foot-fault assays and reference memory showed significant impairment in animals exposed to mBBI. This study's hypothesis is that there are inflammatory outcomes to mTBI over time that cause its deleterious effects. For example, mBBI significantly increased brain levels of interleukin (IL)-1ß and tumor necrosis factor-α (TNFα) protein. There were significant inflammatory responses in the cortex, hippocampus, thalamus, and amygdala 6 hr after mBBI, as evidenced by increased levels of the inflammatory markers associated with activation of microglia and macrophages, ionized calcium binding adaptor 1 (IBA1), impairment of the blood-brain barrier, and significant neuronal losses. There were significant increases in phosphorylated Tau (p-Tau) levels, a putative precursor to the development of neuroencephalopathy, as early as 6 hr after mBBI in the cortex and the hippocampus but not in the thalamus or the amygdala. There was an apparent correlation between RRRTs and p-Tau protein levels but not IBA1. These results suggest potential therapies for mild blast injuries via blockade of the IL-1ß and TNFα receptors.


Asunto(s)
Lesiones Encefálicas/complicaciones , Modelos Animales de Enfermedad , Trastornos de la Memoria/etiología , Trastornos Psicomotores/etiología , Análisis de Varianza , Animales , Encéfalo/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Recuento de Células , Citocinas/metabolismo , Macrófagos/patología , Microglía/patología , Actividad Motora/fisiología , Ratas , Factores de Tiempo , Proteínas tau/metabolismo
3.
J Neurochem ; 105(3): 628-40, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18248364

RESUMEN

The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1alpha was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI.


Asunto(s)
Acuaporina 1/metabolismo , Edema/metabolismo , Hipoxia/metabolismo , Dolor Intratable/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Vías Aferentes/metabolismo , Vías Aferentes/fisiopatología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Astrocitos/metabolismo , Tamaño de la Célula/efectos de los fármacos , Enfermedad Crónica , Modelos Animales de Enfermedad , Edema/etiología , Edema/fisiopatología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Hipoxia/etiología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Melatonina/metabolismo , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Dolor Intratable/etiología , Dolor Intratable/fisiopatología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/fisiopatología , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Equilibrio Hidroelectrolítico/fisiología
4.
Neuroscience ; 143(3): 779-92, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17074445

RESUMEN

The effect of spinal cord injury (SCI) on the expression levels and distribution of water channel aquaporin 4 (AQP4) has not been studied. We have found AQP4 in gray and white matter astrocytes in both uninjured and injured rat spinal cords. AQP4 was detected in astrocytic processes that were tightly surrounding neurons and blood vessels, but more robustly in glia limitans externa and interna, which were forming an interface between spinal cord parenchyma and cerebrospinal fluid (CSF). Such spatial distribution of AQP4 suggests a critical role that astrocytes expressing AQP4 play in the transport of water from blood/CSF to spinal cord parenchyma and vice versa. SCI induced biphasic changes in astrocytic AQP4 levels, including its early down-regulation and subsequent persistent up-regulation. However, changes in AQP4 expression did not correlate well with the onset and magnitude of astrocytic activation, when measured as changes in GFAP expression levels. It appears that reactive astrocytes began expressing increased levels of AQP4 after migrating to the wound area (thoracic region) two weeks after SCI, and AQP4 remained significantly elevated for months after SCI. We also showed that increased levels of AQP4 spread away from the lesion site to cervical and lumbar segments, but only in chronically injured spinal cords. Although overall AQP4 expression levels increased in chronically-injured spinal cords, AQP4 immunolabeling in astrocytic processes forming glia limitans externa was decreased, which may indicate impaired water transport through glia limitans externa. Finally, we also showed that SCI-induced changes in AQP4 protein levels correlate, both temporally and spatially, with persistent increases in water content in acutely and chronically injured spinal cords. Although correlative, this finding suggests a possible link between AQP4 and impaired water transport/edema/syringomyelia in contused spinal cords.


Asunto(s)
Acuaporina 4/metabolismo , Regulación de la Expresión Génica/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Acuaporina 4/genética , Astrocitos/metabolismo , Autoantígenos/metabolismo , Western Blotting/métodos , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente/métodos , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo , Tubulina (Proteína)/metabolismo , Agua/metabolismo , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...