Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(8): e0228002, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764831

RESUMEN

Irinotecan specifically targets topoisomerase I (topoI), and is used to treat various solid tumors, but only 13-32% of patients respond to the therapy. Now, it is understood that the rapid rate of topoI degradation in response to irinotecan causes irinotecan resistance. We have published that the deregulated DNA-PKcs kinase cascade ensures rapid degradation of topoI and is at the core of the drug resistance mechanism of topoI inhibitors, including irinotecan. We also identified CTD small phosphatase 1 (CTDSP1) (a nuclear phosphatase) as a primary upstream regulator of DNA-PKcs in response to topoI inhibitors. Previous reports showed that rabeprazole, a proton pump inhibitor (PPI) inhibits CTDSP1 activity. The purpose of this study was to confirm the effects of rabeprazole on CTDSP1 activity and its impact on irinotecan-based therapy in colon cancer. Using differentially expressing CTDSP1 cells, we demonstrated that CTDSP1 contributes to the irinotecan sensitivity by preventing topoI degradation. Retrospective analysis of patients receiving irinotecan with or without rabeprazole has shown the effects of CTDSP1 on irinotecan response. These results indicate that CTDSP1 promotes sensitivity to irinotecan and rabeprazole prevents this effect, resulting in drug resistance. To ensure the best chance at effective treatment, rabeprazole may not be a suitable PPI for cancer patients treated with irinotecan.


Asunto(s)
Neoplasias Colorrectales/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Rabeprazol/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias Colorrectales/fisiopatología , ADN , ADN-Topoisomerasas de Tipo I/fisiología , Proteína Quinasa Activada por ADN/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Humanos , Irinotecán/metabolismo , Irinotecán/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/metabolismo , Inhibidores de la Bomba de Protones/farmacología , Rabeprazol/farmacología , Estudios Retrospectivos , Inhibidores de Topoisomerasa I/farmacología
2.
Hepatology ; 61(5): 1591-602, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25529917

RESUMEN

UNLABELLED: Sorafenib, a broad tyrosine kinase inhibitor, is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC) but provides limited survival benefits. Recently, immunotherapy has emerged as a promising treatment strategy, but its role remains unclear in HCCs, which are associated with decreased cytotoxic CD8(+) T-lymphocyte infiltration in both murine and human tumors. Moreover, in mouse models after sorafenib treatment intratumoral hypoxia is increased and may fuel evasive resistance. Using orthotopic HCC models, we now show that increased hypoxia after sorafenib treatment promotes immunosuppression, characterized by increased intratumoral expression of the immune checkpoint inhibitor programmed death ligand-1 and accumulation of T-regulatory cells and M2-type macrophages. We also show that the recruitment of immunosuppressive cells is mediated in part by hypoxia-induced up-regulation of stromal cell-derived 1 alpha. Inhibition of the stromal cell-derived 1 alpha receptor (C-X-C receptor type 4 or CXCR4) using AMD3100 prevented the polarization toward an immunosuppressive microenvironment after sorafenib treatment, inhibited tumor growth, reduced lung metastasis, and improved survival. However, the combination of AMD3100 and sorafenib did not significantly change cytotoxic CD8(+) T-lymphocyte infiltration into HCC tumors and did not modify their activation status. In separate experiments, antibody blockade of the programmed death ligand-1 receptor programmed death receptor-1 (PD-1) showed antitumor effects in treatment-naive tumors in orthotopic (grafted and genetically engineered) models of HCC. However, anti-PD-1 antibody treatment had additional antitumor activity only when combined with sorafenib and AMD3100 and not when combined with sorafenib alone. CONCLUSION: Anti-PD-1 treatment can boost antitumor immune responses in HCC models; when used in combination with sorafenib, anti-PD-1 immunotherapy shows efficacy only with concomitant targeting of the hypoxic and immunosuppressive microenvironment with agents such as CXCR4 inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Inmunoterapia/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores CXCR4/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Animales , Humanos , Ratones , Niacinamida/uso terapéutico , Sorafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA