Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Clin Cancer Res ; 29(15): 2933-2943, 2023 08 01.
Article En | MEDLINE | ID: mdl-37223924

PURPOSE: Patients with neuroendocrine prostate cancer (NEPC) are often managed with immunotherapy regimens extrapolated from small-cell lung cancer (SCLC). We sought to evaluate the tumor immune landscape of NEPC compared with other prostate cancer types and SCLC. EXPERIMENTAL DESIGN: In this retrospective study, a cohort of 170 patients with 230 RNA-sequencing and 104 matched whole-exome sequencing data were analyzed. Differences in immune and stromal constituents, frequency of genomic alterations, and associations with outcomes were evaluated. RESULTS: In our cohort, 36% of the prostate tumors were identified as CD8+ T-cell inflamed, whereas the remaining 64% were T-cell depleted. T-cell-inflamed tumors were enriched in anti-inflammatory M2 macrophages and exhausted T cells and associated with shorter overall survival relative to T-cell-depleted tumors (HR, 2.62; P < 0.05). Among all prostate cancer types in the cohort, NEPC was identified to be the most immune depleted, wherein only 9 out of the 36 total NEPC tumors were classified as T-cell inflamed. These inflamed NEPC cases were enriched in IFN gamma signaling and PD-1 signaling compared with other NEPC tumors. Comparison of NEPC with SCLC revealed that NEPC had poor immune content and less mutations compared with SCLC, but expression of checkpoint genes PD-L1 and CTLA-4 was comparable between NEPC and SCLC. CONCLUSIONS: NEPC is characterized by a relatively immune-depleted tumor immune microenvironment compared with other primary and metastatic prostate adenocarcinoma except in a minority of cases. These findings may inform development of immunotherapy strategies for patients with advanced prostate cancer.


Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/metabolism , Carcinoma, Neuroendocrine/pathology , Tumor Microenvironment/genetics
2.
Blood Cancer Discov ; 4(3): 208-227, 2023 05 01.
Article En | MEDLINE | ID: mdl-36723991

The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE: Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.


Hodgkin Disease , Reed-Sternberg Cells , Humans , Reed-Sternberg Cells/pathology , Hodgkin Disease/genetics , Hodgkin Disease/pathology , Flow Cytometry , Evolution, Molecular
3.
Cancer Res ; 83(4): 506-520, 2023 02 15.
Article En | MEDLINE | ID: mdl-36480186

Mutagenic processes leave distinct signatures in cancer genomes. The mutational signatures attributed to APOBEC3 cytidine deaminases are pervasive in human cancers. However, data linking individual APOBEC3 proteins to cancer mutagenesis in vivo are limited. Here, we showed that transgenic expression of human APOBEC3G promotes mutagenesis, genomic instability, and kataegis, leading to shorter survival in a murine bladder cancer model. Acting as mutagenic fuel, APOBEC3G increased the clonal diversity of bladder cancer, driving divergent cancer evolution. Characterization of the single-base substitution signature induced by APOBEC3G in vivo established the induction of a mutational signature distinct from those caused by APOBEC3A and APOBEC3B. Analysis of thousands of human cancers revealed the contribution of APOBEC3G to the mutational profiles of multiple cancer types, including bladder cancer. Overall, this study dissects the mutagenic impact of APOBEC3G on the bladder cancer genome, identifying that it contributes to genomic instability, tumor mutational burden, copy-number loss events, and clonal diversity. SIGNIFICANCE: APOBEC3G plays a role in cancer mutagenesis and clonal heterogeneity, which can potentially inform future therapeutic efforts that restrict tumor evolution. See related commentary by Caswell and Swanton, p. 487.


APOBEC-3G Deaminase , Clonal Evolution , Mutagenesis , Urinary Bladder Neoplasms , Animals , Humans , Mice , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Clonal Evolution/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Genomic Instability , Minor Histocompatibility Antigens/genetics , Mutagenesis/genetics , Mutagens , Urinary Bladder Neoplasms/genetics
4.
Lancet Oncol ; 22(6): 824-835, 2021 06.
Article En | MEDLINE | ID: mdl-34015311

BACKGROUND: Previous phase 2 trials of neoadjuvant anti-PD-1 or anti-PD-L1 monotherapy in patients with early-stage non-small-cell lung cancer have reported major pathological response rates in the range of 15-45%. Evidence suggests that stereotactic body radiotherapy might be a potent immunomodulator in advanced non-small-cell lung cancer (NSCLC). In this trial, we aimed to evaluate the use of stereotactic body radiotherapy in patients with early-stage NSCLC as an immunomodulator to enhance the anti-tumour immune response associated with the anti-PD-L1 antibody durvalumab. METHODS: We did a single-centre, open-label, randomised, controlled, phase 2 trial, comparing neoadjuvant durvalumab alone with neoadjuvant durvalumab plus stereotactic radiotherapy in patients with early-stage NSCLC, at NewYork-Presbyterian and Weill Cornell Medical Center (New York, NY, USA). We enrolled patients with potentially resectable early-stage NSCLC (clinical stages I-IIIA as per the 7th edition of the American Joint Committee on Cancer) who were aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0 or 1. Eligible patients were randomly assigned (1:1) to either neoadjuvant durvalumab monotherapy or neoadjuvant durvalumab plus stereotactic body radiotherapy (8 Gy × 3 fractions), using permuted blocks with varied sizes and no stratification for clinical or molecular variables. Patients, treating physicians, and all study personnel were unmasked to treatment assignment after all patients were randomly assigned. All patients received two cycles of durvalumab 3 weeks apart at a dose of 1·12 g by intravenous infusion over 60 min. Those in the durvalumab plus radiotherapy group also received three consecutive daily fractions of 8 Gy stereotactic body radiotherapy delivered to the primary tumour immediately before the first cycle of durvalumab. Patients without systemic disease progression proceeded to surgical resection. The primary endpoint was major pathological response in the primary tumour. All analyses were done on an intention-to-treat basis. This trial is registered with ClinicalTrial.gov, NCT02904954, and is ongoing but closed to accrual. FINDINGS: Between Jan 25, 2017, and Sept 15, 2020, 96 patients were screened and 60 were enrolled and randomly assigned to either the durvalumab monotherapy group (n=30) or the durvalumab plus radiotherapy group (n=30). 26 (87%) of 30 patients in each group had their tumours surgically resected. Major pathological response was observed in two (6·7% [95% CI 0·8-22·1]) of 30 patients in the durvalumab monotherapy group and 16 (53·3% [34·3-71·7]) of 30 patients in the durvalumab plus radiotherapy group. The difference in the major pathological response rates between both groups was significant (crude odds ratio 16·0 [95% CI 3·2-79·6]; p<0·0001). In the 16 patients in the dual therapy group with a major pathological response, eight (50%) had a complete pathological response. The second cycle of durvalumab was withheld in three (10%) of 30 patients in the dual therapy group due to immune-related adverse events (grade 3 hepatitis, grade 2 pancreatitis, and grade 3 fatigue and thrombocytopaenia). Grade 3-4 adverse events occurred in five (17%) of 30 patients in the durvalumab monotherapy group and six (20%) of 30 patients in the durvalumab plus radiotherapy group. The most frequent grade 3-4 events were hyponatraemia (three [10%] patients in the durvalumab monotherapy group) and hyperlipasaemia (three [10%] patients in the durvalumab plus radiotherapy group). Two patients in each group had serious adverse events (pulmonary embolism [n=1] and stroke [n=1] in the durvalumab monotherapy group, and pancreatitis [n=1] and fatigue [n=1] in the durvalumab plus radiotherapy group). No treatment-related deaths or deaths within 30 days of surgery were reported. INTERPRETATION: Neoadjuvant durvalumab combined with stereotactic body radiotherapy is well tolerated, safe, and associated with a high major pathological response rate. This neoadjuvant strategy should be validated in a larger trial. FUNDING: AstraZeneca.


Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Adolescent , Adult , Aged , Antibodies, Monoclonal/adverse effects , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Combined Modality Therapy , Female , Humans , Male , Middle Aged , Neoadjuvant Therapy/adverse effects , Neoplasm Staging , Radiosurgery/methods , Young Adult
5.
Nat Commun ; 11(1): 2213, 2020 05 05.
Article En | MEDLINE | ID: mdl-32371927

Despite infiltrating immune cells having an essential function in human disease and patients' responses to treatments, mechanisms influencing variability in infiltration patterns remain unclear. Here, using bulk RNA-seq data from 46 tissues in the Genotype-Tissue Expression project, we apply cell-type deconvolution algorithms to evaluate the immune landscape across the healthy human body. We discover that 49 of 189 infiltration-related phenotypes are associated with either age or sex (FDR < 0.1). Genetic analyses further show that 31 infiltration-related phenotypes have genome-wide significant associations (iQTLs) (P < 5.0 × 10-8), with a significant enrichment of same-tissue expression quantitative trait loci in suggested iQTLs (P < 10-5). Furthermore, we find an association between helper T cell content in thyroid tissue and a COMMD3/DNAJC1 regulatory variant (P = 7.5 × 10-10), which is associated with thyroiditis in other cohorts. Together, our results identify key factors influencing inter-individual variability of immune infiltration, to provide insights on potential therapeutic targets.


Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Immune System/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Adult , Algorithms , Female , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Genotype , Humans , Immune System/cytology , Immune System/immunology , Male , Middle Aged , Phenotype , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Thyroid Gland/cytology , Thyroid Gland/immunology , Thyroid Gland/metabolism
6.
Clin Case Rep ; 8(1): 47-50, 2020 Jan.
Article En | MEDLINE | ID: mdl-31998484

The diagnosis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) should be considered in patients with late-onset personality change and mania. However, neuropsychological deficits precipitated by the disorder pose significant challenges to recognition and appropriate management of CADASIL in susceptible patients.

8.
mBio ; 7(2): e00235, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26980833

UNLABELLED: Respiratory paramyxoviruses, including the highly prevalent human parainfluenza viruses, cause the majority of childhood croup, bronchiolitis, and pneumonia, yet there are currently no vaccines or effective treatments. Paramyxovirus research has relied on the study of laboratory-adapted strains of virus in immortalized cultured cell lines. We show that findings made in such systems about the receptor interaction and viral fusion requirements for entry and fitness-mediated by the receptor binding protein and the fusion protein-can be drastically different from the requirements for infection in vivo. Here we carried out whole-genome sequencing and genomic analysis of circulating human parainfluenza virus field strains to define functional and structural properties of proteins of circulating strains and to identify the genetic basis for properties that confer fitness in the field. The analysis of clinical strains suggests that the receptor binding-fusion molecule pairs of circulating viruses maintain a balance of properties that result in an inverse correlation between fusion in cultured cells and growth in vivo. Future analysis of entry mechanisms and inhibitory strategies for paramyxoviruses will benefit from considering the properties of viruses that are fit to infect humans, since a focus on viruses that have adapted to laboratory work provides a distinctly different picture of the requirements for the entry step of infection. IMPORTANCE: Mechanistic information about viral infection-information that impacts antiviral and vaccine development-is generally derived from viral strains grown under laboratory conditions in immortalized cells. This study uses whole-genome sequencing of clinical strains of human parainfluenza virus 3-a globally important respiratory paramyxovirus-in cell systems that mimic the natural human host and in animal models. By examining the differences between clinical isolates and laboratory-adapted strains, the sequence differences are correlated to mechanistic differences in viral entry. For this ubiquitous and pathogenic respiratory virus to infect the human lung, modulation of the processes of receptor engagement and fusion activation occur in a manner quite different from that carried out by the entry glycoprotein-expressing pair of laboratory strains. These marked contrasts in the viral properties necessary for infection in cultured immortalized cells and in natural host tissues and animals will influence future basic and clinical studies.


Respiratory System/virology , Respirovirus/physiology , Virus Internalization , Animals , Genome, Viral , Humans , Respirovirus/isolation & purification , Respirovirus/pathogenicity , Respirovirus/ultrastructure , Respirovirus Infections/virology , Sequence Analysis, DNA , Sigmodontinae , Virulence
...