Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Sci Rep ; 14(1): 5583, 2024 03 07.
Article En | MEDLINE | ID: mdl-38448490

In this report, we present OLAF-Seq, a novel strategy to construct a long-read sequencing library such that adjacent fragments are linked with end-terminal duplications. We use the CRISPR-Cas9 nickase enzyme and a pool of multiple sgRNAs to perform non-random fragmentation of targeted long DNA molecules (> 300kb) into smaller library-sized fragments (about 20 kbp) in a manner so as to retain physical linkage information (up to 1000 bp) between adjacent fragments. DNA molecules targeted for fragmentation are preferentially ligated with adaptors for sequencing, so this method can enrich targeted regions while taking advantage of the long-read sequencing platforms. This enables the sequencing of target regions with significantly lower total coverage, and the genome sequence within linker regions provides information for assembly and phasing. We demonstrated the validity and efficacy of the method first using phage and then by sequencing a panel of 100 full-length cancer-related genes (including both exons and introns) in the human genome. When the designed linkers contained heterozygous genetic variants, long haplotypes could be established. This sequencing strategy can be readily applied in both PacBio and Oxford Nanopore platforms for both long and short genes with an easy protocol. This economically viable approach is useful for targeted enrichment of hundreds of target genomic regions and where long no-gap contigs need deep sequencing.


Bacteriophages , RNA, Guide, CRISPR-Cas Systems , Humans , Sequence Analysis, DNA , Genomics , CRISPR-Associated Protein 9 , DNA/genetics
2.
Res Sq ; 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37961674

Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to cure in T-cell Acute Lymphoblastic Leukemia (T-ALL). Biomarker guided risk stratification and targeted therapy have the potential to improve outcomes in high-risk T-ALL; however, cellular and genetic factors contributing to treatment resistance remain unknown. Previous bulk genomic studies in T-ALL have implicated tumor heterogeneity as an unexplored mechanism for treatment failure. To link tumor subpopulations with clinical outcome, we created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic (CITE-seq/snATAC-seq) analysis to a cohort of 40 cases of T-ALL treated on the Children's Oncology Group AALL0434 clinical trial. The cohort was carefully selected to capture the immunophenotypic diversity of T-ALL, with early T-cell precursor (ETP) and Near/Non-ETP subtypes represented, as well as enriched with both relapsed and treatment refractory cases. Integrated analyses of T-ALL blasts and normal T-cell precursors identified a bone-marrow progenitor-like (BMP-like) leukemia sub-population associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL within two independent patient cohorts using bulk RNA-sequencing data from over 1300 patients. We defined the mutational landscape of BMP-like T-ALL, finding that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. We transcriptionally matched BMP-like blasts to early thymic seeding progenitors that have low NR3C1 expression and high stem cell gene expression, corresponding to a corticosteroid and conventional cytotoxic resistant phenotype we observed in ex vivo drug screening. To identify novel targets for BMP-like blasts, we performed in silico and in vitro drug screening against the BMP-like signature and prioritized BMP-like overexpressed cell-surface (CD44, ITGA4, LGALS1) and intracellular proteins (BCL-2, MCL-1, BTK, NF-κB) as candidates for precision targeted therapy. We established patient derived xenograft models of BMP-high and BMP-low leukemias, which revealed vulnerability of BMP-like blasts to apoptosis-inducing agents, TEC-kinase inhibitors, and proteasome inhibitors. Our study establishes the first multi-omic signatures for rapid risk-stratification and targeted treatment of high-risk T-ALL.

3.
Sci Rep ; 12(1): 6512, 2022 04 20.
Article En | MEDLINE | ID: mdl-35444207

Identification of structural variants (SVs) breakpoints is important in studying mutations, mutagenic causes, and functional impacts. Next-generation sequencing and whole-genome optical mapping are extensively used in SV discovery and characterization. However, multiple platforms and computational approaches are needed for comprehensive analysis, making it resource-intensive and expensive. Here, we propose a strategy combining optical mapping and cas9-assisted targeted nanopore sequencing to analyze SVs. Optical mapping can economically and quickly detect SVs across a whole genome but does not provide sequence-level information or precisely resolve breakpoints. Furthermore, since only a subset of all SVs is known to affect biology, we attempted to type a subset of all SVs using targeted nanopore sequencing. Using our approach, we resolved the breakpoints of five deletions, five insertions, and an inversion, in a single experiment.


Nanopore Sequencing , Chromosome Mapping , Genome , Genome, Human , Genomics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
4.
Anal Chem ; 93(28): 9808-9816, 2021 07 20.
Article En | MEDLINE | ID: mdl-34232611

Analysis of structural variations (SVs) is important to understand mutations underlying genetic disorders and pathogenic conditions. However, characterizing SVs using short-read, high-throughput sequencing technology is difficult. Although long-read sequencing technologies are being increasingly employed in characterizing SVs, their low throughput and high costs discourage widespread adoption. Sequence motif-based optical mapping in nanochannels is useful in whole-genome mapping and SV detection, but it is not possible to precisely locate the breakpoints or estimate the copy numbers. We present here a universal multicolor mapping strategy in nanochannels combining conventional sequence-motif labeling system with Cas9-mediated target-specific labeling of any 20-base sequences (20mers) to create custom labels and detect new features. The sequence motifs are labeled with green fluorophores and the 20mers are labeled with red fluorophores. Using this strategy, it is possible to not only detect the SVs but also utilize custom labels to interrogate the features not accessible to motif-labeling, locate breakpoints, and precisely estimate copy numbers of genomic repeats. We validated our approach by quantifying the D4Z4 copy numbers, a known biomarker for facioscapulohumeral muscular dystrophy (FSHD) and estimating the telomere length, a clinical biomarker for assessing disease risk factors in aging-related diseases and malignant cancers. We also demonstrate the application of our methodology in discovering transposable long non-interspersed Elements 1 (LINE-1) insertions across the whole genome.


Genetic Testing , Genomics , Chromosome Mapping , Genome , High-Throughput Nucleotide Sequencing , Humans
5.
Environ Toxicol Pharmacol ; 82: 103562, 2021 Feb.
Article En | MEDLINE | ID: mdl-33310082

In humans, the telomere consists of tandem 5'TTAGGG3' DNA repeats on both ends of all 46 chromosomes. Telomere shortening has been linked to aging and age-related diseases. Similarly, telomere length changes have been associated with chemical exposure, molecular-level DNA damage, and tumor development. Telomere elongation has been associated to tumor development, caused due to chemical exposure and molecular-level DNA damage. The methods used to study these effects mostly rely on average telomere length as a biomarker. The mechanisms regulating subtelomere-specific and haplotype-specific telomere lengths in humans remain understudied and poorly understood, primarily because of technical limitations in obtaining these data for all chromosomes. Recent studies have shown that it is the short telomeres that are crucial in preserving chromosome stability. The identity and frequency of specific critically short telomeres potentially is a useful biomarker for studying aging, age-related diseases, and cancer. Here, we will briefly review the role of telomere length, its measurement, and our recent single-molecule telomere length measurement assay. With this assay, one can measure individual telomere lengths as well as identify their physically linked subtelomeric DNA. This assay can also positively detect telomere loss, characterize novel subtelomeric variants, haplotypes, and previously uncharacterized recombined subtelomeres. We will also discuss its applications in aging cells and cancer cells, highlighting the utility of the single molecule telomere length assay.


High-Throughput Screening Assays , Telomere , Humans , Nanotechnology
6.
Sci Rep ; 10(1): 12235, 2020 07 22.
Article En | MEDLINE | ID: mdl-32699385

The most prevalent microdeletion in humans occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has defied elucidation due to its size, regional complexity, and haplotype diversity, and is not well represented in the human genome reference. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo hemizygous deletion of ~ 3 Mbp occurring by non-allelic homologous recombination (NAHR) mediated by LCR22s. In this study, optical mapping has been used to elucidate LCR22 structure and variation in 88 individuals in thirty 22q11.2DS families to uncover potential risk factors for germline rearrangements leading to 22q11.2DS offspring. Families were optically mapped to characterize LCR22 structures, NAHR locations, and genomic signatures associated with the deletion. Bioinformatics analyses revealed clear delineations between LCR22 structures in normal and deletion-containing haplotypes. Despite no explicit whole-haplotype predisposing configurations being identified, all NAHR events contain a segmental duplication encompassing FAM230 gene members suggesting preferred recombination sequences. Analysis of deletion breakpoints indicates that preferred recombinations occur between FAM230 and specific segmental duplication orientations within LCR22A and LCR22D, ultimately leading to NAHR. This work represents the most comprehensive analysis of 22q11.2DS NAHR events demonstrating completely contiguous LCR22 structures surrounding and within deletion breakpoints.


Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/genetics , Homologous Recombination/genetics , Segmental Duplications, Genomic/genetics , Alleles , Chromosome Deletion , Chromosome Mapping/methods , Female , Genome, Human/genetics , Haplotypes/genetics , Humans , Male
7.
Sci Rep ; 9(1): 15059, 2019 10 21.
Article En | MEDLINE | ID: mdl-31636335

Optical mapping of linearized DNA molecules is a promising new technology for sequence assembly and scaffolding, large structural variant detection, and diagnostics. This is currently achieved either using nanochannel confinement or by stretching single DNA molecules on a solid surface. While the first method necessitates DNA labelling before linearization, the latter allows for modification post-linearization, thereby affording increased process flexibility. Each method is constrained by various physical and chemical limitations. One of the most common techniques for linearization of DNA uses a hydrophobic surface and a receding meniscus, termed molecular combing. Here, we report the development of a microfabricated surface that can not only comb the DNA molecules efficiently but also provides for sequence-specific enzymatic fluorescent DNA labelling. By modifying a glass surface with two contrasting functionalities, such that DNA binds selectively to one of the two regions, we can control DNA extension, which is known to be critical for sequence-recognition by an enzyme. Moreover, the surface modification provides enzymatic access to the DNA backbone, as well as minimizing non-specific fluorescent dye adsorption. These enhancements make the designed surface suitable for large-scale and high-resolution single DNA molecule studies.


DNA/metabolism , Microtechnology , Staining and Labeling , Fluorescence , Humans , Molecular Weight , Polyethylene Glycols/chemistry , Substrate Specificity , Surface Properties
8.
Nanoscale ; 8(28): 13740-54, 2016 Jul 14.
Article En | MEDLINE | ID: mdl-27412458

Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various analytical methods. DEM and computed tomography (CT) phantom imaging showed that GSAN produced robust contrast that was comparable to silver alone. Cell viability, reactive oxygen species generation and DNA damage results revealed that the formulations with 30% or higher gold content are cytocompatible to Hep G2 and J774A.1 cells. In vivo imaging was performed in mice with and without breast tumors. The results showed that GSAN produce strong DEM and CT contrast and accumulated in tumors. Furthermore, both in vivo imaging and ex vivo analysis indicated the excretion of GSAN via both urine and feces. In summary, GSAN produce strong DEM and CT contrast, and has potential for both blood pool imaging and for breast cancer screening.


Breast Neoplasms/diagnostic imaging , Early Detection of Cancer , Mammography , Metal Nanoparticles , Tomography, X-Ray Computed , Alloys , Animals , Contrast Media , Gold , Hep G2 Cells , Humans , Mice , Silver
...