Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
PLoS One ; 17(4): e0261165, 2022.
Article En | MEDLINE | ID: mdl-35413058

Certolizumab pegol (CZP) is a PEGylated Fc-free tumor necrosis factor (TNF) inhibitor antibody approved for use in the treatment of rheumatoid arthritis (RA), Crohn's disease, psoriatic arthritis, axial spondyloarthritis and psoriasis. In a clinical trial of patients with severe RA, CZP improved disease symptoms in approximately half of patients. However, variability in CZP efficacy remains a problem for clinicians, thus, the aim of this study was to identify genetic variants predictive of CZP response. We performed a genome-wide association study (GWAS) of 302 RA patients treated with CZP in the REALISTIC trial to identify common single nucleotide polymorphisms (SNPs) associated with treatment response. Whole-exome sequencing was also performed for 74 CZP extreme responders and non-responders within the same population, as well as 1546 population controls. No common SNPs or rare functional variants were significantly associated with CZP response, though a non-significant enrichment in the RA-implicated KCNK5 gene was observed. Two SNPs near spondin-1 and semaphorin-4G approached genome-wide significance. The results of the current study did not provide an unambiguous predictor of CZP response.


Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Certolizumab Pegol/therapeutic use , Genome-Wide Association Study , Humans , Treatment Outcome , Tumor Necrosis Factor Inhibitors
2.
Scand J Gastroenterol ; 52(11): 1263-1269, 2017 Nov.
Article En | MEDLINE | ID: mdl-28776448

OBJECTIVES: To elucidate the genetic variability between heavy drinkers with and without alcoholic hepatitis (AH). MATERIALS AND METHODS: An exploratory genome-wide association study (GWAS; NCT02172898) was conducted comparing 90 AH cases with 93 heavy drinking matched controls without liver disease in order to identify variants or genes associated with risk for AH. Individuals were genotyped using the multi-ethnic genotyping array, after which the data underwent conventional quality control. Using bioinformatics tools, pathways associated with AH were explored on the basis of individual variants, and based on genes with a higher 'burden' of functional variation. RESULTS: Although no single variant reached genome-wide significance, an association signal was observed for PNPLA3 rs738409 (p = .01, OR 1.9, 95% CI 1.1-3.1), a common single nucleotide polymorphism that has been associated with a variety of liver-related pathologies including alcoholic cirrhosis. Using the improved gene set enrichment analysis for GWAS tool, it was shown that, based on the single variants' trait-association p-values, multiple pathways were associated with risk for AH with high confidence (false discovery rate [FDR] < 0.05), including several pathways involved in lymphocyte activation and chemokine signaling, which coincides with findings from other research groups. Several Tox Functions and Canonical Pathways were highlighted using Ingenuity Pathway Analysis, with an especially conspicuous role for pathways related to ethanol degradation, which is not surprising considering the phenotype of the genotyped individuals. CONCLUSION: This preliminary analysis suggests a role for PNPLA3 variation and several gene sets/pathways that may influence risk for AH among heavy drinkers.


Genome-Wide Association Study , Hepatitis, Alcoholic/genetics , Lipase/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Case-Control Studies , Female , Genetic Predisposition to Disease , Hepatitis, Alcoholic/complications , Humans , Liver Cirrhosis, Alcoholic/pathology , Male , Middle Aged , Prospective Studies , Risk Factors , Signal Transduction/genetics , United States
3.
Am J Respir Crit Care Med ; 196(1): 82-93, 2017 07 01.
Article En | MEDLINE | ID: mdl-28099038

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is an increasingly recognized, often fatal lung disease of unknown etiology. OBJECTIVES: The aim of this study was to use whole-exome sequencing to improve understanding of the genetic architecture of pulmonary fibrosis. METHODS: We performed a case-control exome-wide collapsing analysis including 262 unrelated individuals with pulmonary fibrosis clinically classified as IPF according to American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines (81.3%), usual interstitial pneumonia secondary to autoimmune conditions (11.5%), or fibrosing nonspecific interstitial pneumonia (7.2%). The majority (87%) of case subjects reported no family history of pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS: We searched 18,668 protein-coding genes for an excess of rare deleterious genetic variation using whole-exome sequence data from 262 case subjects with pulmonary fibrosis and 4,141 control subjects drawn from among a set of individuals of European ancestry. Comparing genetic variation across 18,668 protein-coding genes, we found a study-wide significant (P < 4.5 × 10-7) case enrichment of qualifying variants in TERT, RTEL1, and PARN. A model qualifying ultrarare, deleterious, nonsynonymous variants implicated TERT and RTEL1, and a model specifically qualifying loss-of-function variants implicated RTEL1 and PARN. A subanalysis of 186 case subjects with sporadic IPF confirmed TERT, RTEL1, and PARN as study-wide significant contributors to sporadic IPF. Collectively, 11.3% of case subjects with sporadic IPF carried a qualifying variant in one of these three genes compared with the 0.3% carrier rate observed among control subjects (odds ratio, 47.7; 95% confidence interval, 21.5-111.6; P = 5.5 × 10-22). CONCLUSIONS: We identified TERT, RTEL1, and PARN-three telomere-related genes previously implicated in familial pulmonary fibrosis-as significant contributors to sporadic IPF. These results support the idea that telomere dysfunction is involved in IPF pathogenesis.


Exome/genetics , Genetic Predisposition to Disease/genetics , Idiopathic Pulmonary Fibrosis/genetics , Female , Genetic Variation/genetics , Humans , Male , Middle Aged
4.
Gastroenterology ; 152(5): 1078-1089, 2017 04.
Article En | MEDLINE | ID: mdl-28043905

BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for drug-induced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A*33:01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9-3.8; P = 2.4 × 10-8) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6-2.5; P = 9.7 × 10-9). The association with A*33:01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A*33:01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6-2.7; P = 4.8 × 10-9). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0-9.5; P = 7.1 × 10-9). We validated the association between A*33:01 terbinafine- and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A*33:01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.


Chemical and Drug Induced Liver Injury/genetics , Chromosomes, Human, Pair 2/genetics , HLA-A Antigens/genetics , Alleles , Antidepressive Agents/adverse effects , Antifungal Agents/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Female , Fenofibrate/adverse effects , Genes, MHC Class I/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hypolipidemic Agents/adverse effects , Male , Middle Aged , Naphthalenes/adverse effects , Odds Ratio , Phenotype , Platelet Aggregation Inhibitors/adverse effects , Polymorphism, Single Nucleotide , Sertraline/adverse effects , Terbinafine , Ticlopidine/adverse effects , White People/genetics
5.
Clin Gastroenterol Hepatol ; 15(1): 103-112.e2, 2017 01.
Article En | MEDLINE | ID: mdl-27311619

BACKGROUND & AIMS: Drug-induced liver injury (DILI) has features similar to those of other liver diseases including autoimmune hepatitis (AIH). We aimed to characterize the clinical and autoimmune features of liver injury caused by nitrofurantoin, minocycline, methyldopa, or hydralazine. METHODS: We analyzed data from 88 cases of DILI attributed to nitrofurantoin, minocycline, methyldopa, or hydralazine included in the Drug-Induced Liver Injury Network prospective study from 2004 through 2014. Sera were collected from patients at baseline and follow-up examination and tested for levels of immunoglobulin G (IgG), antibodies to nuclear antigen (ANA), smooth muscle (SMA), and soluble liver antigen (SLA). An autoimmune score was derived on the basis of increases in levels of IgG, ANA, SMA, and SLA (assigned values of 0, 1+, or 2+). AIH-associated HLA-DRB1*03:01 and HLA-DRB1*04:01 allele frequencies were compared with those of the general population (controls). RESULTS: Of the 88 cases, 80 were women (91%), 74% had hepatocellular injury, and 25% had severe injury. At the onset of DILI, 39% of cases had increased levels of IgG, 72% had increased levels of ANA, 60% had increased levels of SMA, and none had increases in SLA. A phenotype of autoimmunity (autoimmune score ≥2) was observed in 82% of cases attributed to nitrofurantoin and 73% of cases attributed to minocycline (73%) but only 55% of cases attributed to methyldopa and 43% of cases attributed to hydralazine (P = .16 for nitrofurantoin and minocycline vs methyldopa and hydralazine). We observed a decrease in numbers of serum samples positive for ANA (P = .01) or SMA (P < .001) and in autoimmune scores (P < .001) between DILI onset and follow-up. Similar percentages of patients with DILI had HLA-DRB1*03:01 (15%) and HLA-DRB1*04:01 (9%) as controls (12% and 9%, respectively). CONCLUSIONS: In analysis of data from the DILIN prospective study, we found that most cases of DILI attributed to nitrofurantoin or minocycline and about half of cases that were due to methyldopa and hydralazine have a phenotype of autoimmunity similar to AIH. These features decrease with recovery of the injury and are not associated with the typical HLA alleles found in patients with idiopathic AIH.


Chemical and Drug Induced Liver Injury/complications , Hepatitis, Autoimmune/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Infective Agents/adverse effects , Antihypertensive Agents/adverse effects , Autoantibodies/blood , Female , HLA Antigens/genetics , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Young Adult
6.
J Clin Pharmacol ; 57(1): 118-124, 2017 01.
Article En | MEDLINE | ID: mdl-27349952

Individuals with lower inosine triphosphatase (ITPA) enzyme activity have a reduced likelihood of experiencing hemolytic anemia during hepatitis C virus (HCV) treatment containing ribavirin (RBV). Because ITPA degrades purines and RBV is a purine analogue, it is conceivable that ITPA activity may affect intracellular RBV concentrations. Here we assessed the association between ITPA activity phenotype and concentrations of RBV triphosphate (RBV-TP) in red blood cells (RBCs) during HCV treatment. RBV-TP was quantified in the RBCs of 177 HCV-infected individuals at a median (range) of 84 (19 to 336) days into HCV treatment that included RBV. Mean (SD) RBV-TP concentrations were 92.8 (51.6), 101.3 (53.5), 184.8 (84.5), and 197.7 (64.6) pmol/106 cells for 100%, 60%, 30%, and ≤10% ITPA activity groups, respectively. Overall, RBV-TP was approximately 2-fold higher in patients with ≤30% ITPA activity compared to 100% activity (P < .0001). Despite higher RBV-TP levels, individuals with variant ITPA phenotypes had less anemia. The 100% activity group had, on average, a -2.20 g/dL drop in hemoglobin vs -1.43 g/dL (P = .04) for 60% activity, -1.14 g/dL (P = .008) for 30% activity, and -0.70 g/dL (P = .06) for ≤10% activity. This finding of higher RBV-TP concentrations in RBCs in ITPA variants was unexpected given that ITPA activity-deficient individuals have a reduced likelihood of RBV-induced anemia. It also refutes the hypothesis that the mechanism by which ITPA variants are protected against anemia is due to lower RBV-TP levels in RBCs.


Pharmacogenomic Variants/physiology , Phenotype , Pyrophosphatases/blood , Pyrophosphatases/genetics , Ribavirin/blood , Adult , Cohort Studies , Female , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Humans , Male , Middle Aged , Ribavirin/therapeutic use , Inosine Triphosphatase
8.
Pharmacogenet Genomics ; 26(5): 218-24, 2016 May.
Article En | MEDLINE | ID: mdl-26959717

OBJECTIVE: Flupirtine is a nonopioid analgesic with regulatory approval in a number of European countries. Because of the risk of serious liver injury, its use is now limited to short-term pain management. We aimed to identify genetic risk factors for flupirtine-related drug-induced liver injury (DILI) as these are unknown. MATERIALS AND METHODS: Six flupirtine-related DILI patients from Germany were included in a genome-wide association study (GWAS) involving a further 614 European cases of DILI because of other drugs and 10,588 population controls. DILI was diagnosed by causality assessment and expert review. Human leucocyte antigen (HLA) and single nucleotide polymorphism genotypes were imputed from the GWAS data, with direct HLA typing performed on selected cases to validate HLA predictions. Four replication cases that were unavailable for the GWAS were genotyped by direct HLA typing, yielding an overall total of 10 flupirtine DILI cases. RESULTS: In the six flupirtine DILI cases included in the GWAS, we found a significant enrichment of the DRB1*16:01-DQB1*05:02 haplotype compared with the controls (minor allele frequency cases 0.25 and minor allele frequency controls 0.013; P=1.4 × 10(-5)). We estimated an odds ratio for haplotype carriers of 18.7 (95% confidence interval 2.5-140.5, P=0.002) using population-specific HLA control data. The result was replicated in four additional cases, also with a haplotype frequency of 0.25. In the combined cohort (six GWAS plus four replication cases), the haplotype was also significant (odds ratio 18.7, 95% confidence interval 4.31-81.42, P=6.7 × 10(-5)). CONCLUSION: We identified a novel HLA class II association for DILI, confirming the important contribution of HLA genotype towards the risk of DILI generally.


Aminopyridines/adverse effects , Chemical and Drug Induced Liver Injury/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Adult , Aged , Chemical and Drug Induced Liver Injury/etiology , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
9.
Sci Rep ; 5: 16037, 2015 Nov 04.
Article En | MEDLINE | ID: mdl-26531896

Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3' untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3' UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3' UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure.


Genetic Predisposition to Disease/genetics , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Interleukins/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , 3' Untranslated Regions/genetics , Antiviral Agents/therapeutic use , Cell Line, Tumor , Gene Expression Regulation , HeLa Cells , Hepacivirus , Hepatitis C, Chronic/virology , Humans , Interferons
10.
BMC Med ; 13: 196, 2015 Aug 19.
Article En | MEDLINE | ID: mdl-26286715

BACKGROUND: Keratin 8 and 18 (K8/K18) cytoskeletal proteins protect hepatocytes from undergoing apoptosis and their mutations predispose to adverse outcomes in acute liver failure (ALF). All known K8/K18 variants occur at relatively non-conserved residues and do not cause keratin cytoskeleton reorganization, whereas epidermal keratin-conserved residue mutations disrupt the keratin cytoskeleton and cause severe skin disease. The aim of our study was to identify keratin variants in idiosyncratic drug-induced liver injury (DILI). METHODS: Genomic DNA was isolated from 800 patients enrolled in an ongoing US multicenter study, with DILI attributed to a wide range of drugs. Specific K8/K18 exonic regions were PCR-amplified and screened by denaturing HPLC followed by DNA sequencing. The functional impact of keratin variants was assessed using cell transfection and immune staining. RESULTS: Heterozygous and compound amino acid-altering K8/K18 variants were identified in 86 DILI patients and non-coding variants in 15 subjects. Five novel amino acid-altering (K8 Lys393Arg, K8 Ala351Val, K8 Ala358Val, K8 Ile346Val, K18 Asp89His) and two non-coding variants were observed. Several variants segregated with specific ethnic backgrounds but were found at similar frequencies in DILI subjects and ethnically matched population controls. Notably, variants in highly conserved residues of K8 Lys393Arg (ezetimibe/simvastatin-related) and K18 Asp89His (isoniazid-related) were found in patients with fatal DILI. These novel variants also led to keratin network disruption in transfected cells. CONCLUSIONS: Novel K8/K18 cytoskeleton-disrupting variants were identified in two patients and segregated with fatal DILI. Other non-cytoskeleton-disrupting keratin variants did not preferentially associate with DILI.


Chemical and Drug Induced Liver Injury , Keratin-18/genetics , Keratin-8/genetics , Chemical and Drug Induced Liver Injury/epidemiology , Chemical and Drug Induced Liver Injury/genetics , Disease Susceptibility , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Mutation , Prevalence , United States/epidemiology
12.
Drug Metab Dispos ; 43(5): 725-34, 2015 May.
Article En | MEDLINE | ID: mdl-25735837

Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability.


ATP-Binding Cassette Transporters/antagonists & inhibitors , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 11 , Bayes Theorem , Cholestasis/metabolism , Computer Simulation , Drug-Related Side Effects and Adverse Reactions/metabolism , Humans , Risk Factors
13.
Antimicrob Agents Chemother ; 59(4): 2179-88, 2015 Apr.
Article En | MEDLINE | ID: mdl-25645847

Ribavirin, a guanosine analog, is a broad-spectrum antiviral agent. Ribavirin has been a fundamental component of the treatment of hepatitis C virus (HCV) infection for decades, but there is a very limited understanding of the clinical pharmacology of this drug. Furthermore, it is associated with a major dose-limiting toxicity, hemolytic anemia. Ribavirin undergoes intracellular phosphorylation by host enzymes to ribavirin monophosphate (RMP), ribavirin diphosphate (RDP), and ribavirin triphosphate (RTP). The intracellular forms have been associated with antiviral and toxic effects in vitro, but the kinetics of these phosphorylated moieties have not been fully elucidated in vivo. We developed a model to characterize the plasma pharmacokinetics of ribavirin and the difference between intracellular phosphorylation kinetics in red cells (nonnucleated) and in peripheral blood mononuclear cells (nucleated). A time-independent two-compartment model with first-order absorption described the plasma data well. The cellular phosphorylation kinetics was described by a one-compartment model for RMP, with the formation rate driven by plasma concentrations and the first-order degradation rate. RDP and RTP rapidly reached equilibrium with RMP. Concomitant telaprevir use, inosine triphosphatase genetics, creatinine clearance, weight, and sex were significant covariates. The terminal ribavirin half-life in plasma and phosphorylated anabolites in cells was approximately 224 h. We found no evidence of time-dependent kinetics. These data provide a foundation for uncovering concentration-effect associations for ribavirin and determining the optimal dose and duration of this drug for use in combination with newer direct-acting HCV agents. (This study has been registered at ClinicalTrials.gov under registration no. NCT01097395.).


Antiviral Agents/pharmacokinetics , Hepatitis C, Chronic/blood , Ribavirin/pharmacokinetics , Adult , Antiviral Agents/blood , Antiviral Agents/therapeutic use , Body Weight , Erythrocytes/metabolism , Female , Half-Life , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Humans , Liver Function Tests , Male , Middle Aged , Models, Statistical , Oligopeptides/therapeutic use , Phosphorylation , Population , Ribavirin/blood , Ribavirin/therapeutic use , Sex Characteristics
14.
Virology ; 476: 334-340, 2015 Feb.
Article En | MEDLINE | ID: mdl-25577150

Genetic variants surrounding the interferon-λ3 (IFNL3) gene are strongly associated with clearance of hepatitis C virus (HCV). A variant (rs368234815 TT/ΔG) upstream of IFNL3 was recently implicated to control expression of a novel gene termed IFNL4. We conducted genetic analysis of rs368234815 in a chronic HCV patient cohort and molecular studies of IFNL4 in primary human hepatocytes (PHHs). Analysis of PHHs that are heterozygous at rs368234815 revealed that the IFNL4 transcript isoform is rare, accounting for 2% of transcripts arising from the IFNL4 locus. Nevertheless, IFNL4 over-expression inhibited replication of multiple Flaviviridae and IFNL4 anti-viral potency required the IFNL receptor. In contrast to IFNL3, IFNL4 was inefficiently secreted and appeared to act in a cell-autonomous manner. Genetic analysis revealed associations of rs368234815 with sustained virological response and pre-treatment viral load. The findings suggest that IFNL4 is an atypical IFNL whose activity may be maladaptive to clearance of HCV infection.


Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Interleukins/genetics , Cohort Studies , Genotype , Hepacivirus/drug effects , Hepacivirus/physiology , Hepatitis C, Chronic/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Interleukins/metabolism , Male , Polymorphism, Single Nucleotide , Ribavirin/therapeutic use , Treatment Outcome , Viral Load
15.
Food Chem Toxicol ; 76: 19-26, 2015 Feb.
Article En | MEDLINE | ID: mdl-25446466

Consumer use of herbal and dietary supplements has recently grown in the United States and, with increased use, reports of rare adverse reactions have emerged. One such supplement is green tea extract, containing the polyphenol epigallocatechin gallate (EGCG), which has been shown to be hepatotoxic at high doses in animal models. The Drug-Induced Liver Injury Network has identified multiple patients who have experienced liver injury ascribed to green tea extract consumption and the relationship to dose has not been straightforward, indicating that differences in sensitivity may contribute to the adverse response in susceptible people. The Diversity Outbred (DO), a genetically heterogeneous mouse population, provides a potential platform for study of interindividual toxicity responses to green tea extract. Within the DO population, an equal exposure to EGCG (50 mg/kg; daily for three days) was found to be tolerated in the majority of mice; however, a small fraction of the animals (16%; 43/272) exhibited severe hepatotoxicity (10-86.8% liver necrosis) that is analogous to the clinical cases. The data indicate that the DO mice may provide a platform for informing risk of rare, adverse reactions that may occur in consumer populations upon ingestion of concentrated herbal products.


Antioxidants/adverse effects , Catechin/analogs & derivatives , Chemical and Drug Induced Liver Injury/genetics , Liver/drug effects , Polyphenols/adverse effects , Animals , Antioxidants/administration & dosage , Catechin/administration & dosage , Catechin/adverse effects , Chromosome Mapping , Dose-Response Relationship, Drug , Genotyping Techniques , In Situ Nick-End Labeling , Liver/metabolism , Male , Mice/genetics , Phenotype , Polymorphism, Single Nucleotide , Polyphenols/administration & dosage , Quantitative Trait Loci , Tea/chemistry
16.
Blood ; 124(13): 2046-50, 2014 Sep 25.
Article En | MEDLINE | ID: mdl-25139357

Identification of the molecular etiologies of primary immunodeficiencies has led to important insights into the development and function of the immune system. We report here the cause of combined immunodeficiency in 4 patients from 2 different consanguineous Qatari families with similar clinical and immunologic phenotypes. The patients presented at an early age with fungal, viral, and bacterial infections and hypogammaglobulinemia. Although their B- and T-cell numbers were normal, they had low regulatory T-cell and NK-cell numbers. Moreover, patients' T cells were mostly CD45RA(+)-naive cells and were defective in activation after T-cell receptor stimulation. All patients contained the same homozygous nonsense mutation in IKBKB (R286X), revealed by whole-exome sequencing with undetectable IKKß and severely decreased NEMO proteins. Mutant IKKß(R286X) was unable to complex with IKKα/NEMO. Immortalized patient B cells displayed impaired IκBα phosphorylation and NFκB nuclear translocation. These data indicate that mutated IKBKB is the likely cause of immunodeficiency in these 4 patients.


Codon, Nonsense , I-kappa B Kinase/genetics , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Family , Female , Homozygote , Humans , Infant , Male , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/therapy , Treatment Outcome
17.
Semin Liver Dis ; 34(2): 123-33, 2014 May.
Article En | MEDLINE | ID: mdl-24879978

There is considerable evidence that susceptibility to idiosyncratic drug-induced liver injury (DILI) is genetically determined. Though genetic associations with DILI have been reported since the 1980s, the development of genome-wide association studies has enabled genetic risk factors for DILI, in common with other diseases, to be detected and confirmed more confidently. Human leukocyte antigen (HLA) genotype has been demonstrated to be a strong risk factor for development of DILI with a range of drugs and the underlying mechanism, probably involving presentation of a drug-peptide complex to T cells is increasingly well understood. However, specific HLA alleles are not associated with all forms of DILI and non-HLA genetic risk factors, especially those relating to drug disposition, also appear to contribute. For some drugs, there is evidence of a dual role for HLA and drug metabolism genes. Though the associations with non-HLA genes have been less well replicated than the HLA associations, there is increasing evidence that drug metabolism genes such as NAT2 and UGT2B7 contribute to some forms of DILI. Translating current genetic findings on DILI susceptibility to the clinic has been relatively slow, but some progress is now being made. In the future, DNA sequencing may lead to the identification of rare variants that contribute to DILI. Developments in the related area of epigenomics and in the development of improved models for DILI by use of genetically defined induced pluripotent stem cells should improve understanding of the biology of DILI and inform drug development.


Chemical and Drug Induced Liver Injury/genetics , Cytochrome P-450 Enzyme System/genetics , Genetic Predisposition to Disease , HLA Antigens/genetics , ATP-Binding Cassette Transporters/genetics , Chemical and Drug Induced Liver Injury/metabolism , Genome-Wide Association Study , Genotype , Glucuronosyltransferase/genetics , Glutathione Transferase/genetics , Humans , Inactivation, Metabolic/genetics , N-Terminal Acetyltransferases/genetics , Oxidative Stress/genetics , Pharmacogenetics
18.
Antivir Ther ; 19(7): 679-86, 2014.
Article En | MEDLINE | ID: mdl-24503447

BACKGROUND: Protease inhibitors for the treatment of HCV can cause mild and reversible elevations of unconjugated bilirubin. We sought to characterize genetic determinants of bilirubin elevations using a genome-wide approach among patients with genotype 1 HCV who received combination therapy that included GS-9256, a novel potent inhibitor of HCV NS3 serine protease, as part of a Phase IIb trial. METHODS: Of the 200 patients sampled, 176 had confirmed European ancestry and were included in the analysis. Infinium HumanOmni5BeadChip (Illumina, Inc., San Diego, CA, USA) was used for genotyping. A categorical analysis of low (grade 0-1) versus high (grade 2-4) bilirubin toxicity grade and a quantitative trait locus mapping of peak bilirubin concentrations was performed. RESULTS: A total of 4,466,809 genetic markers were analysed. No single variant showed a statistically significant association with observed bilirubin elevations in this patient population. In a targeted analysis of single nucleotide polymorphisms in genes known to be involved in bilirubin transport, no significant differences in allele frequency between high and low bilirubin toxicity grade were observed. CONCLUSIONS: These results indicate that risk for bilirubin elevation in patients receiving GS-9256 is unlikely to be strongly influenced by common genetic variants with large effects. The current study cannot rule out a role for common variants of weak effect, or a more complex model, including multiple contributing factors, such as rare variants and as yet unidentified environmental influences.


Antiviral Agents/therapeutic use , Bilirubin/blood , Genome-Wide Association Study , Hepacivirus/metabolism , Hepatitis C/blood , Hepatitis C/genetics , Peptides, Cyclic/therapeutic use , Pharmacogenetics , Phosphinic Acids/therapeutic use , Adult , Aged , Antiviral Agents/pharmacology , Computational Biology , Female , Genotype , Hepacivirus/drug effects , Hepatitis C/drug therapy , Humans , Liver-Specific Organic Anion Transporter 1 , Male , Microbial Sensitivity Tests , Middle Aged , Organic Anion Transporters/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Peptides, Cyclic/pharmacology , Phenotype , Phosphinic Acids/pharmacology , Polymorphism, Single Nucleotide , Solute Carrier Organic Anion Transporter Family Member 1B3 , Viral Nonstructural Proteins/antagonists & inhibitors , Young Adult
19.
Sci Transl Med ; 6(220): 220ps1, 2014 Jan 22.
Article En | MEDLINE | ID: mdl-24452261

The study of the genetics of drug responses has a long history but has provided only a few examples of gene variants that are relevant clinically. Here, we discuss the current state of the pharmacogenomics field with emphasis on the potential of data generated through drug development in order to shed new light on genetic variants predictive of therapeutic outcomes-and likewise the potential of pharmacogenomics to improve clinical trial design. We note some examples in which data from clinical trials have already provided clear pharmacogenomic insights and suggest ways in which genomic technology might be used successfully in drug development.


Genomics/history , Pharmacogenetics/history , Clinical Trials as Topic , Drug Discovery , Gene Frequency , Genome, Human , Genomics/economics , Hepatitis C/genetics , History, 20th Century , History, 21st Century , Humans , Hypercholesterolemia/genetics , Mutation , Pharmacogenetics/economics
20.
Hepatology ; 59(4): 1250-61, 2014 Apr.
Article En | MEDLINE | ID: mdl-23913866

UNLABELLED: Several genome-wide association studies (GWAS) have identified a genetic polymorphism associated with the gene locus for interleukin 28B (IL28B), a type III interferon (IFN), as a major predictor of clinical outcome in hepatitis C. Antiviral effects of the type III IFN family have previously been shown against several viruses, including hepatitis C virus (HCV), and resemble the function of type I IFN including utilization of the intracellular Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway. Effects unique to IL28B that would distinguish it from IFN-α are not well defined. By analyzing the transcriptomes of primary human hepatocytes (PHH) treated with IFN-α or IL28B, we sought to identify functional differences between IFN-α and IL28B to better understand the roles of these cytokines in the innate immune response. Although our data did not reveal distinct gene signatures, we detected striking kinetic differences between IFN-α and IL28B stimulation for interferon stimulated genes (ISGs). While gene induction was rapid and peaked at 8 hours of stimulation with IFN-α in PHH, IL28B produced a slower, but more sustained increase in gene expression. We confirmed these findings in the human hepatoma cell line Huh7.5.1. Interestingly, in HCV-infected cells the rapid response after stimulation with IFN-α was blunted, and the induction pattern resembled that caused by IL28B. CONCLUSION: The kinetics of gene induction are fundamentally different for stimulations with either IFN-α or IL28B in hepatocytes, suggesting distinct roles of these cytokines within the immune response. Furthermore, the observed differences are substantially altered by infection with HCV.


Carcinoma, Hepatocellular/epidemiology , Gene Expression Regulation, Neoplastic/drug effects , Hepatitis C/epidemiology , Hepatocytes/metabolism , Interferon-alpha/pharmacology , Interleukins/pharmacology , Liver Neoplasms/epidemiology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Comorbidity , Dose-Response Relationship, Drug , Hepatitis C/metabolism , Hepatitis C/pathology , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Interferons , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Phosphorylation , STAT1 Transcription Factor/metabolism , Time Factors , Transcriptome/drug effects
...