Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Nature ; 589(7842): 442-447, 2021 01.
Article En | MEDLINE | ID: mdl-33361811

Successful pregnancies rely on adaptations within the mother1, including marked changes within the immune system2. It has long been known that the thymus, the central lymphoid organ, changes markedly during pregnancy3. However, the molecular basis and importance of this process remain largely obscure. Here we show that the osteoclast differentiation receptor RANK4,5 couples female sex hormones to the rewiring of the thymus during pregnancy. Genetic deletion of Rank (also known as Tnfrsf11a) in thymic epithelial cells results in impaired thymic involution and blunted expansion of natural regulatory T (Treg) cells in pregnant female mice. Sex hormones, in particular progesterone, drive the development of thymic Treg cells through RANK in a manner that depends on AIRE+ medullary thymic epithelial cells. The depletion of Rank in the mouse thymic epithelium results in reduced accumulation of natural Treg cells in the placenta, and an increase in the number of miscarriages. Thymic deletion of Rank also results in impaired accumulation of Treg cells in visceral adipose tissue, and is associated with enlarged adipocyte size, tissue inflammation, enhanced maternal glucose intolerance, fetal macrosomia, and a long-lasting transgenerational alteration in glucose homeostasis, which are all key hallmarks of gestational diabetes. Transplantation of Treg cells rescued fetal loss, maternal glucose intolerance and fetal macrosomia. In human pregnancies, we found that gestational diabetes also correlates with a reduced number of Treg cells in the placenta. Our findings show that RANK promotes the hormone-mediated development of thymic Treg cells during pregnancy, and expand the functional role of maternal Treg cells to the development of gestational diabetes and the transgenerational metabolic rewiring of glucose homeostasis.


Diabetes, Gestational/immunology , Fetal Death/etiology , Receptor Activator of Nuclear Factor-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Adipocytes/pathology , Animals , Cell Proliferation , Diabetes, Gestational/etiology , Diabetes, Gestational/metabolism , Diabetes, Gestational/pathology , Epithelial Cells/immunology , Female , Fetus/immunology , Fetus/metabolism , Fetus/pathology , Glucose/metabolism , Glucose Intolerance/genetics , Humans , Intra-Abdominal Fat/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Placenta/immunology , Placenta/pathology , Pregnancy , Receptor Activator of Nuclear Factor-kappa B/deficiency , Receptor Activator of Nuclear Factor-kappa B/genetics , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Transcription Factors/metabolism , AIRE Protein
2.
Cancer Res ; 80(14): 3009-3022, 2020 07 15.
Article En | MEDLINE | ID: mdl-32366477

HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.


Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/prevention & control , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , rac GTP-Binding Proteins/antagonists & inhibitors , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinogenesis/pathology , Cell Proliferation , Humans , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prognosis , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , RAC2 GTP-Binding Protein
3.
EMBO Mol Med ; 11(8): e9266, 2019 08.
Article En | MEDLINE | ID: mdl-31267692

Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor-induced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases.


Angiogenesis Inhibitors/pharmacology , Apelin Receptors/metabolism , Apelin/metabolism , Cell Movement/drug effects , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Mammary Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic , Protein Kinase Inhibitors/pharmacology , Sunitinib/pharmacology , Animals , Apelin/antagonists & inhibitors , Apelin/deficiency , Apelin/genetics , Apelin Receptors/antagonists & inhibitors , Apelin Receptors/deficiency , Apelin Receptors/genetics , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/pathology , Neoplasm Metastasis , Signal Transduction , Tumor Burden/drug effects , Tumor Microenvironment
4.
Cell Res ; 29(7): 579-591, 2019 07.
Article En | MEDLINE | ID: mdl-31133695

Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells. Here we show that deletion of apoptosis-inducing factor (AIF) in a KrasG12D-driven mouse lung cancer model resulted in a marked survival advantage, with delayed tumor onset and decreased malignant progression. Mechanistically, Aif deletion leads to oxidative phosphorylation (OXPHOS) deficiency and a switch in cellular metabolism towards glycolysis in non-transformed pneumocytes and at early stages of tumor development. Paradoxically, although Aif-deficient cells exhibited a metabolic Warburg profile, this bioenergetic change resulted in a growth disadvantage of KrasG12D-driven as well as Kras wild-type lung cancer cells. Cell-autonomous re-expression of both wild-type and mutant AIF (displaying an intact mitochondrial, but abrogated apoptotic function) in Aif-knockout KrasG12D mice restored OXPHOS and reduced animal survival to the same level as AIF wild-type mice. In patients with non-small cell lung cancer, high AIF expression was associated with poor prognosis. These data show that AIF-regulated mitochondrial respiration and OXPHOS drive the progression of lung cancer.


Apoptosis Inducing Factor/physiology , Carcinogenesis/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Datasets as Topic , Disease Progression , Glycolysis , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation
5.
Genes Dev ; 31(20): 2099-2112, 2017 10 15.
Article En | MEDLINE | ID: mdl-29118048

Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer.


Lung Neoplasms/metabolism , Receptor Activator of Nuclear Factor-kappa B/physiology , Alveolar Epithelial Cells/metabolism , Animals , Cell Respiration , Cells, Cultured , Energy Metabolism , Female , Gonadal Steroid Hormones/physiology , Homeostasis , Humans , Lung/metabolism , Lung Neoplasms/drug therapy , Male , Mice , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Activator of Nuclear Factor-kappa B/antagonists & inhibitors , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Respiratory Mucosa/metabolism
7.
Cell Res ; 26(7): 761-74, 2016 07.
Article En | MEDLINE | ID: mdl-27241552

Breast cancer is the most common female cancer, affecting approximately one in eight women during their life-time. Besides environmental triggers and hormones, inherited mutations in the breast cancer 1 (BRCA1) or BRCA2 genes markedly increase the risk for the development of breast cancer. Here, using two different mouse models, we show that genetic inactivation of the key osteoclast differentiation factor RANK in the mammary epithelium markedly delayed onset, reduced incidence, and attenuated progression of Brca1;p53 mutation-driven mammary cancer. Long-term pharmacological inhibition of the RANK ligand RANKL in mice abolished the occurrence of Brca1 mutation-driven pre-neoplastic lesions. Mechanistically, genetic inactivation of Rank or RANKL/RANK blockade impaired proliferation and expansion of both murine Brca1;p53 mutant mammary stem cells and mammary progenitors from human BRCA1 mutation carriers. In addition, genome variations within the RANK locus were significantly associated with risk of developing breast cancer in women with BRCA1 mutations. Thus, RANKL/RANK control progenitor cell expansion and tumorigenesis in inherited breast cancer. These results present a viable strategy for the possible prevention of breast cancer in BRCA1 mutant patients.


BRCA1 Protein/genetics , Breast Neoplasms/genetics , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Animals , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cells, Cultured , DNA Damage/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Estrogen Receptor alpha/metabolism , Female , Genotype , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , RANK Ligand/antagonists & inhibitors , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptors, Progesterone/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Stem Cells/cytology , Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Cell Rep ; 15(7): 1481-1492, 2016 05 17.
Article En | MEDLINE | ID: mdl-27160902

The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway.


Cell Lineage , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/drug effects , Caspase 8/metabolism , Cell Lineage/drug effects , Colitis/metabolism , Colitis/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dextran Sulfate , Embryo, Mammalian/cytology , Enzyme Activation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Deletion , Mice, Inbred C57BL , Mutation/genetics , NF-kappa B/metabolism , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
9.
Nature ; 507(7493): 508-12, 2014 Mar 27.
Article En | MEDLINE | ID: mdl-24553136

Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.


Adaptor Proteins, Signal Transducing/metabolism , Killer Cells, Natural/immunology , Mammary Neoplasms, Experimental/pathology , Melanoma, Experimental/pathology , Neoplasm Metastasis/immunology , Proto-Oncogene Proteins c-cbl/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Female , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Male , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/prevention & control , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-cbl/deficiency , Proto-Oncogene Proteins c-cbl/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Warfarin/pharmacology , Warfarin/therapeutic use , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
10.
Cell Cycle ; 11(9): 1757-64, 2012 May 01.
Article En | MEDLINE | ID: mdl-22510570

The transcription factor c-Myc strongly stimulates cell proliferation but also regulates apoptosis, senescence, cell competition and cell differentiation, and its elevated activity is a hallmark for human tumorigenesis. c-Myc induces transcription by forming heterodimers with Max and then directly binding DNA at E-box sequences. Conversely, transcription repression depends primarily on the inhibitory interaction of c-Myc/Max with Miz-1 at DNA initiator elements. We recently described a distinct mechanism of c-Myc gene regulation, in which c-Myc interacts with the retinoic acid receptor α (RARα) and is recruited to RAR DNA binding sequences (RAREs). In leukemia cells, this c-Myc/RARα complex functions either as an activator or a repressor of RARα-dependent targets through a phosphorylation switch. Unphosphorylated c-Myc interacts with RARα to repress the expression of RAR targets required for differentiation, thereby aggravating leukemia malignancy. However, if c-Myc is phosphorylated by the kinase Pak2, the c-Myc/RARα complex activates transcription of those same genes to stimulate differentiation, thus reducing tumor burden. Here, we discuss the role of c-Myc in balancing proliferation and differentiation and how modulating this previously unidentified c-Myc activity might provide alternative therapies against leukemia and possibly other types of tumors.


Gene Expression Regulation, Leukemic , Genes, Tumor Suppressor , Genes, myc , Leukemia/pathology , Proto-Oncogene Proteins c-myc/metabolism , Cell Differentiation , Cell Proliferation , Epidermis/metabolism , Epidermis/pathology , Granulocytes/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Leukemia/genetics , Leukemia/metabolism , Multiprotein Complexes/metabolism , Phosphorylation , Protein Interaction Mapping , Proto-Oncogene Proteins c-myc/genetics , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha , Signal Transduction , Stem Cell Niche , Tretinoin/pharmacology , p21-Activated Kinases/metabolism
11.
Cancer Cell ; 21(1): 5-7, 2012 Jan 17.
Article En | MEDLINE | ID: mdl-22264783

The mechanisms leading to the constitutive activation of NF-κB in cancers and the pathways upstream and downstream of this activation are not fully understood. In this issue of Cancer Cell, Yamagishi et al. demonstrate that Polycomb-mediated silencing of miR-31 is implicated in the aberrant activation of NF-κB signaling in tumors.

12.
Nat Cell Biol ; 13(12): 1443-9, 2011 Oct 23.
Article En | MEDLINE | ID: mdl-22020439

MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis(1). MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized(3). Cells possess an intrinsic pathway that can abrogate MYC-MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix-loop-helix domain(4). Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC-MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC-MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.


E-Box Elements/physiology , Gene Expression Regulation, Leukemic/physiology , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Proto-Oncogene Proteins c-myc/genetics , Transcription, Genetic/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , HL-60 Cells , Homeostasis/genetics , Humans , Leukemia, Promyelocytic, Acute/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
13.
Brief Funct Genomics ; 10(1): 18-29, 2011 Jan.
Article En | MEDLINE | ID: mdl-21258047

Chromatin modifications at both histones and DNA are critical for regulating gene expression. Mis-regulation of such epigenetic marks can lead to pathological states; indeed, cancer affecting the hematopoietic system is frequently linked to epigenetic abnormalities. Here, we discuss the different types of modifications and their general impact on transcription, as well as the polycomb group of proteins, which effect transcriptional repression and are often mis-regulated. Further, we discuss how chromosomal translocations leading to fusion proteins can aberrantly regulate gene transcription through chromatin modifications within the hematopoietic system. PML-RARa, AML1-ETO and MLL-fusions are examples of fusion proteins that mis-regulate epigenetic modifications (either directly or indirectly), which can lead to acute myeloblastic leukemia (AML). An in-depth understanding of the mechanisms behind the mis-regulation of epigenetic modifications that lead to the development and progression of AMLs could be critical for designing effective treatments.


Epigenesis, Genetic , Leukemia/genetics , Animals , Chromatin/genetics , Hematopoiesis/genetics , Humans , Leukemia/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
14.
Nat Struct Mol Biol ; 16(10): 1074-9, 2009 Oct.
Article En | MEDLINE | ID: mdl-19734898

The histone variants macroH2A1 and macroH2A2 are associated with X chromosome inactivation in female mammals. However, the physiological function of macroH2A proteins on autosomes is poorly understood. Microarray-based analysis in human male pluripotent cells uncovered occupancy of both macroH2A variants at many genes encoding key regulators of development and cell fate decisions. On these genes, the presence of macroH2A1+2 is a repressive mark that overlaps locally and functionally with Polycomb repressive complex 2. We demonstrate that macroH2A1+2 contribute to the fine-tuning of temporal activation of HOXA cluster genes during neuronal differentiation. Furthermore, elimination of macroH2A2 function in zebrafish embryos produced severe but specific phenotypes. Taken together, our data demonstrate that macroH2A variants constitute an important epigenetic mark involved in the concerted regulation of gene expression programs during cellular differentiation and vertebrate development.


Epigenesis, Genetic , Histones/chemistry , Animals , Cell Lineage , Gene Expression Regulation , Genetic Variation , Histones/genetics , Homeodomain Proteins/metabolism , Humans , Male , Multigene Family , Oligonucleotide Array Sequence Analysis , Phenotype , Polycomb-Group Proteins , Repressor Proteins/metabolism , Stem Cells/cytology , Zebrafish
15.
Neurobiol Aging ; 29(7): 969-80, 2008 Jul.
Article En | MEDLINE | ID: mdl-17306421

Cerebral amyloid angiopathy, associated to most cases of Alzheimer's disease (AD), is characterized by the deposition of amyloid ss-peptide (Ass) in brain vessels, although the origin of the vascular amyloid deposits is still controversial: neuronal versus vascular. In the present work, we demonstrate that primary cultures of human cerebral vascular smooth muscle cells (HC-VSMCs) have all the secretases involved in amyloid ss-protein precursor (APP) cleavage and produce Ass(1-40) and Ass(1-42). Oxidative stress, a key factor in the etiology and pathophysiology of AD, up-regulates ss-site APP cleaving enzyme 1 (BACE1) expression, as well as Ass(1-40) and Ass(1-42) secretion in HC-VSMCs. This process is mediated by c-Jun N-terminal Kinase and p38 MAPK signaling and appears restricted to BACE1 regulation as no changes in the other secretases were observed. In conclusion, oxidative stress-mediated up-regulation of the amyloidogenic pathway in human cerebral vascular smooth muscle cells may contribute to the overall cerebrovascular amyloid angiopathy observed in AD patients.


Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidative Stress , Signal Transduction , Cells, Cultured , Humans
...