Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 86(7): 1006-1013, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34260160

RESUMEN

Two novel and simple donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) containing two units of the p-methoxytriphenylamine (TPA) electron donor group covalently bridged by means of the 3,4-dimethoxyselenophene spacer through single and triple bonds are reported. The optoelectronic and thermal properties of the new selenium-containing HTMs have been determined using standard experimental techniques and theoretical density functional theory (DFT) calculations. The selenium-based HTMs have been incorporated in mesoporous perovskite solar cells (PSCs) in combination with the triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 . Limited values of power conversion efficiencies, up to 13.4 %, in comparison with the archetype spiro-OMeTAD (17.8 %), were obtained. The reduced efficiencies showed by the new HTMs are attributed to their poor film-forming ability, which constrains their photovoltaic performance due to the appearance of structural defects (pinholes).

2.
Angew Chem Int Ed Engl ; 60(33): 17887-17892, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34086392

RESUMEN

A new compound (1) formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry, UV/Vis-NIR, IR, EPR, and transient spectroscopy. Self-assembly of 1 on a Au(111) surface has been investigated by scanning tunneling microscopy. Experiments have been rationalized by quantum chemical calculations. 1 exhibits a unique charge distribution in its anionic form, with a gradient of charge yielding a neat molecular in-plane electric dipole momentum, which transforms out-of-plane after surface deposition due to twisted→folded conformational change and to partial charge transfer from Au(111). Intermolecular van der Waals interactions and antiparallel trapezoidal shape fitting lead to the formation of an optimal dense on Au(111) two-dimensional assembly of 1.

3.
Chemistry ; 26(48): 11039-11047, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32608525

RESUMEN

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azomethine-EDOT central scaffold, resulting in a more pronounced redshift. The three new derivatives have been tested in combination with the state-of-the-art triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 in standard mesoporous PSCs. Remarkable power conversion efficiencies of 17.48 % and 18.30 % were measured for DTTX-1 and DTTX-2, respectively, close to that measured for the benchmarking HTM spiro-OMeTAD (18.92 %), under 100 mA cm-2 AM 1.5G solar illumination. PSCs with DTTX-3 reached a PCE value of 12.68 %, which is attributed to the poorer film formation in comparison to DTTX-1 and DTTX-2. These PCE values are in perfect agreement with the conductivity and hole mobility values determined for the new compounds and spiro-OMeTAD. Steady-state photoluminescence further confirmed the potential of DTTX-1 and DTTX-2 for hole-transport applications as an alternative to spiro-OMeTAD.

4.
J Org Chem ; 85(1): 224-233, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31760753

RESUMEN

Three hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-b]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI3)0.85(MAPbBr3)0.15 perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response. A remarkable power conversion efficiency exceeding 18% was achieved for one of the TbT derivatives, which was slightly higher than the value measured for the benchmark spiro-OMeTAD.

5.
J Am Chem Soc ; 142(9): 4162-4172, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31859500

RESUMEN

Two novel homo and hetero three-dimensional nanographenes, NG1 and NG2, featuring a cyclooctatetraene core are designed, synthesized, and characterized. A concise and efficient bottom-up methodology was employed during which 24 new carbon-carbon bonds were formed. By means of a Scholl reaction nanographenes with 53 fused rings are realized, which exhibited good solubility in common organic solvents. The resulting saddle-like structures of NG1 and NG2 are electron-rich and show good chemical and electrochemical stability. Their molecular structures are fully elucidated by single-crystal X-ray crystallography. From their crystal structure analysis is concluded that both nanographenes are chiral and crystallize as a racemic mixture. Our work was rounded-off by excited state investigations such as electron and energy transfer with electron-acceptors and -donors.

6.
Chem Soc Rev ; 47(23): 8541-8571, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30283961

RESUMEN

Photovoltaic solar cells based on perovskites have come to the forefront in science by achieving exceptional power conversion efficiencies (PCEs) in less than a decade of research. This "still young" generation of solar cells is currently rivalling, in PCEs, well-established technologies, such as cadmium telluride (CdTe) and silicon. Further improvements in device stability by means of innovative materials are yet to come, with technology becoming closer to meeting the market requirements. Emerging from this groundbreaking discovery, a great number of charge transporting materials have flourished, which is particularly true for hole transporting materials (HTMs). The huge number of molecules prepared stem from design and engineering of a wide variety of new and also chemically modified old molecules where organic synthesis has played a fundamental role. In this review, the contribution of chemistry through those synthetic protocols used for producing new and innovative HTMs from relatively simple organic molecules is presented in a rational and systematic manner. The variety and impact of synthetic strategies followed, the structure-property relationship and stability, conductivity and device performance are highlighted from a chemical viewpoint.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA