Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Total Environ ; 922: 171214, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38408672

In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 µg·kg-1 - 10 µg·kg-1) were obtained, with the exception of norfloxacin (34 µg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.


Anti-Infective Agents , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/metabolism , Tandem Mass Spectrometry , Soil Pollutants/analysis , Anti-Infective Agents/toxicity , Anti-Infective Agents/metabolism , Sulfamethazine/analysis , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Tetracycline/analysis
2.
Chemosphere ; 311(Pt 1): 136935, 2023 Jan.
Article En | MEDLINE | ID: mdl-36309051

Sediment toxicity testing has become a crucial component for assessing the risks posed by contaminated sediments and for the development of sediment quality assessment strategies. Commonly used organisms for bioassays with estuarine sediments include amphipods, Arenicola marina polychaetes and echinoids. Among the latter, the Sea Urchin Embryo test (SET) is the most widely used. However, one relevant limitation of this bioassay is the unavailability of gametes all year-round, particularly outside the natural spawning seasons. Consequently, the establishment of an appropriate and complementary model organism for a continuous assessment of sediment quality is recommended. A reliable assessment of the hazards resulting from pollutants in sediments or pore water, can be achieved with ecologically relevant species of sediment such as the polychaete Hediste diversicolor, which is widespread in estuaries and has the capacity to accumulate pollutants. The aim of this work was to develop reliable in vivo and in vitro bioassays with H. diversicolor and its coelomocytes (immune cells) to determine the toxicity thresholds of different contaminants bounded to sediments or resuspended into water. Polychaetes were exposed to sublethal concentrations of CuCl2 (in vivo) and a non-invasive method for collection of polychaetes coelomocytes was applied for the in vitro bioassay, exposing cells to a series of CuCl2 and AgNPs concentrations. Same reference toxicants were used to expose Paracentrotus lividus following the SET (ICES Nº 51; Beiras et al., 2012) and obtained toxicity thresholds were compared between the two species. In vivo exposure of polychaetes to high concentrations of Cu produced weight loss and histopathological alterations. After in vitro approaches, a significant decrease in coelomocytes viability was recorded for both toxicants, in a monotonic dose-response curve, at very short-exposure times (2 h). The toxicity thresholds obtained with polychaetes were in line with the ones obtained with the SET, concluding that their sensitivity is similar. In conclusion, in vivo and in vitro bioassays developed with H. diversicolor are accurate toxicity screenings of pollutants that could be bounded to sediments or dissolved in the pore water, and may complement the SET outside the spawning period of the echinoderms. The bioassays herein developed could be applied not only to establish the toxicity thresholds of individual compounds or mixtures, but also to assess the toxicity of field collected sediments.


Environmental Pollutants , Paracentrotus , Polychaeta , Water Pollutants, Chemical , Animals , Geologic Sediments , Water Pollutants, Chemical/toxicity , Polychaeta/physiology , Biological Assay , Water
3.
RSC Adv ; 11(30): 18493-18499, 2021 May 19.
Article En | MEDLINE | ID: mdl-35480902

Aerosol-assisted Chemical Vapor Deposition (AACVD) is a thermally activated CVD technique that uses micro-droplets as deposition precursors. An AACVD system with a custom-designed reaction chamber has been implemented to grow ZnO thin films using zinc chloride as a precursor. The present work aims to study the impact of the deposition parameters on the thin film, as well as the microstructure evolution and growth kinetics. Aerosol flow has an effect on the density of nucleation sites and on the grain size. The temperature affects the morphology of the grown ZnO, showing a preferential orientation along the c-axis for 350 °C, 375 °C and 400 °C substrate temperatures. The microstructural evolution and the growth kinetics are also presented. A different evolution behavior has been observed for 350 °C, where nucleation site density is the highest at the early stages and it decreases over time in contrast with the cases of 375 °C and 400 °C, where there is an initial increase and a subsequent decrease. The activation energy of the chemical reaction is 1.06 eV. The optical characterization of the material has been performed through reflection measurements showing a relationship between the spectrum and the ZnO film thickness. The electrical characterization has been done by means of an interdigital capacitor, with which it is possible to measure the grain and grain boundary resistance of the material. Both resistances are of the order of 105-106 Ω.

5.
Ecotoxicol Environ Saf ; 183: 109545, 2019 Nov 15.
Article En | MEDLINE | ID: mdl-31446174

Earthworm immune cells (coelomocytes) have become a target system in ecotoxicology due to their sensitivity against a wide range of pollutants, including silver nanoparticles (AgNPs). Presently, in vitro approaches (viability assays in microplate, flow cytometry, cell sorting) with primary cultures of Eisenia fetida coelomocytes have been successfully used to test the toxicity and the dissimilar response of cell subpopulations (amoebocytes and eleocytes) after PVP-PEI coated AgNPs and AgNO3 exposures. In order to obtain reliable data and to accurately assess toxicity with coelomocytes, first an optimal culture medium and the most responsive assay were determined. AgNPs posed a gradual decrease in coelomocytes viability, establishing the LC50 value in RPMI-1640 medium at 6 mg/l and discarding that the observed cytotoxicity was attributable to its coating agent PVP-PEI. Exposure to AgNPs caused selective cytotoxicity in amoebocytes, which correlated with the Ag concentrations measured in sorted amoebocytes and reinforced the idea of dissimilar sensitivities among amoebocytes and eleocytes. Silver nano and ionic forms exerted similar toxicity in coelomocytes. The in vitro approaches with coelomocytes of E. fetida performed in this study have the capacity to predict impairments caused by pollutants at longer exposure levels and thus, provide rapid and valuable information for eco(nano)toxicology.


Culture Media/chemistry , Metal Nanoparticles/toxicity , Oligochaeta/drug effects , Silver/toxicity , Animals , Biological Assay , Biomarkers/metabolism , Cell Survival/drug effects , Cells, Cultured , Flow Cytometry , Oligochaeta/cytology , Primary Cell Culture
...