Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376197

RESUMEN

The aim of this study was to examine homopolymeric poly(N-isopropylacrylamide), p(NIPAM), hydrogels cross-linked with ethylene glycol dimethacrylate as carriers for sulfanilamide. Using FTIR, XRD and SEM methods, structural characterization of synthesized hydrogels before and after sulfanilamide incorporation was performed. The residual reactants content was analyzed using the HPLC method. The swelling behavior of p(NIPAM) hydrogels of different crosslinking degrees was monitored in relation to the temperature and pH values of the surrounding medium. The effect of temperature, pH, and crosslinker content on the sulfanilamide release from hydrogels was also examined. The results of the FTIR, XRD, and SEM analysis showed that sulfanilamide is incorporated into the p(NIPAM) hydrogels. The swelling of p(NIPAM) hydrogels depended on the temperature and crosslinker content while pH had no significant effect. The sulfanilamide loading efficiency increased with increasing hydrogel crosslinking degree, ranging from 87.36% to 95.29%. The sulfanilamide release from hydrogels was consistent with the swelling results-the increase of crosslinker content reduced the amount of released sulfanilamide. After 24 h, 73.3-93.5% of incorporated sulfanilamide was released from the hydrogels. Considering the thermosensitivity of hydrogels, volume phase transition temperature close to the physiological temperature, and the satisfactory results achieved for sulfanilamide incorporation and release, it can be concluded that p(NIPAM) based hydrogels are promising carriers for sulfanilamide.

2.
Nat Prod Res ; : 1-6, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154676

RESUMEN

This work aimed to evaluate chemical profile, antioxidant activity and topical application safety of the raw Osage orange (Maclura pomifera (Raf.) Schneid) fruit extracts obtained by maceration using ethanol and acetone. Out of eighteen different compounds registered in the extracts, fifteen were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry. Pomiferin and osajin were characteristic and representative compounds in both ethanolic and acetone extracts of the Osage orange fruit. Both extracts showed good antioxidant activity (EC50 = 0.03 mg/cm3) after 20 min of incubation. The topical administration safety of the extracts was evaluated in vivo by measuring skin biophysical parameters: electrical capacitance and erythema index, as indicators of stratum corneum hydration and irritation, respectively. Based on the results of the in vivo skin tests, it can be concluded that both of the Osage orange fruit extracts are safe for topical administration - they increased skin hydration and reduced skin irritation under the occlusion.

3.
Pharmaceutics ; 15(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36839703

RESUMEN

Curcumin comes from the plant species Curcuma longa and shows numerous pharmacological activities. There are numerous curcumin formulations with gels or cyclodextrins in order to increase its solubility and bioavailability. This paper presents the formulation of complex of curcumin with 2-hydroxypropyl-ß-cyclodextrin in a thermosensitive hydrogel, based on N-isopropylmethacrylamide and N-isopropylacrylamide with ethylene glycol dimethacrylate as a crosslinker. The product was characterized by chemical methods and also by FTIR, HPLC, DSC, SEM, XRD. The results show that synthesis was successfully done. With an increase in the quantity of crosslinker in the hydrogels, the starting release and the release rate of curcumin from the formulation of the complex with hydrogels decreases. The release rate of curcumin from the gel complex formulation is constant over time. It is possible to design a formulation that will release curcumin for more than 60 days. In order to determine the mechanism and kinetics of curcumin release, various mathematical models were applied by using the DDSolver package for Microsoft Excel application. The Korsmeyer-Peppas model best describes the release of curcumin from the gel formulation of the complex, while the values for the diffusion exponent (0.063-0.074) shows that mechanism of the release rate is based on diffusion.

4.
Pharmaceutics ; 14(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35335904

RESUMEN

The aim of this study is to investigate the possibility of using electrospun polylactide (PLA) fibers as a carrier of the phytoestrogen biochanin A. Polylactide fibers were prepared with different contents of biochanin A by using an electrospinning method at specific process parameters. The obtained electrospun polylactide fibers, as carriers of biochanin A, were characterized by means of different methods. The presented results showed that the mechanical properties of PLA have not changed significantly in the presence of biochanin A. Scanning electron microscopy showed that the fine fiber structure is retained without visible deformations and biochanin A crystals on the surface of the fibres. The analysis by infrared spectroscopy showed that there are no strong interactions between polylactide and biochanin A molecules, which is a good prerequisite for the diffusion release of biochanin A from PLA fibers.The release of biochanin A from PLA fibers in buffer solution pH 7.4 at 37 °C was monitored by applying the HPLC method. The rate and time of the release of biochanin A from PLA fibers is in correlation with the amount of the active ingredient in the matrix of the carrier and follows zero-order kinetics. PLA fibers with biochanin A exhibit concentration-dependent activity on proliferation and migration of L929 fibroblasts in direct culture system in vitro, and proved to be suitable for a potential formulation for use in wound healing.

5.
Antibiotics (Basel) ; 11(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35203738

RESUMEN

Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.

6.
Polymers (Basel) ; 12(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414046

RESUMEN

Poly(N-isopropylmethacrylamide) (p(NiPMAm)) is one of the lesser known homopolymers that has significant potential for designing new "intelligent" materials. The aims of this work were the synthesis a series of cross-linked p(NiPMAm) hydrogels by the free radical polymerization method and the application of gamma-ray radiation for additional cross-linking. The synthesized p(NiPMAm) hydrogels were structurally characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The amount of unreacted monomers was analyzed using high pressure liquid chromatography (HPLC) to evaluate conversion of monomers into polymers. The swelling behavior was monitored in dependence of pH and temperature changes. The previous aim of gamma-ray radiation was the further the cross-linkage of the obtained hydrogel sample in the gelatinous, paste-like state, but the gamma-ray radiation caused decomposition. After absorbing irradiation doses, they transformed into the liquid phase. The results obtained by the gel permeation chromatography (GPC) method indicated that only oligomers and monomers were present in the irradiated liquid material, without molecules with a higher average molar mass, i.e., that the decomposition of the hydrogels occurred. Additionally, the irradiated liquid material was analyzed using the static headspace gas chromatography mass spectrometry (HSS-GC/MS) and gas chromatography/flame ionization detection (HSS-GC/FID) methods. The presence of unchanged initiator molecule and a dominant amount of four new molecules that were different from homopolymers and the reactant (monomer and cross-linker) were determined.

7.
Sci Total Environ ; 414: 564-75, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22153605

RESUMEN

A two-year term aging test was carried out on a building limestone under different urban conditions in the city of Granada (Southern Spain) to assess its Cultural Heritage sustainability. For this purpose stone tablets were placed vertically at four sites with contrasting local pollution micro-environments and exposure conditions (rain-sheltered and unsheltered). The back (rain-sheltered) and the front (rain-unsheltered) faces of the stone tablets were studied for each site. The soiling process (surface blackening) was monitored through lightness (ΔL*) and chroma changes (ΔC*). Additionally atmospheric particles deposited on the stone surfaces and on PM10 filters during the exposure time were studied through a multianalytical approach including scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM) and micro-Raman spectroscopy. The identified atmospheric particles (responsible for stone soiling) were mainly soot and soil dust particles; also fly ash and aged salt particles were found. The soiling process was related to surface texture, exposure conditions and proximity to dense traffic streets. On the front faces of all stones, black soiling and surface roughness promoted by differential erosion between micritic and sparitic calcite were noticed. Moreover, it was found that surface roughness enhanced a feedback process that triggers further black soiling. The calculated effective area coverage (EAC) by light absorbing dust ranged from 10.2 to 20.4%, exceeding by far the established value of 2% EAC (limit perceptible to the human eye). Soiling coefficients (SC) were estimated based on square-root and bounded exponential fittings. Estimated black carbon (BC) concentration resulted in relatively similar SC for all studied sites and thus predicts the soiling process better than using particulate matter (PM10) concentration.


Asunto(s)
Carbonato de Calcio/análisis , Ciudades , Materiales de Construcción/análisis , Material Particulado/análisis , Ceniza del Carbón/análisis , Color , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Sales (Química)/análisis , Hollín/análisis , España , Espectrometría Raman , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...