Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Biol Med (Maywood) ; 248(7): 641-655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37309741

RESUMEN

General anesthetics are potent neurotoxins when given during early development, causing apoptotic deletion of substantial number of neurons and persistent neurocognitive and behavioral deficits in animals and humans. The period of intense synaptogenesis coincides with the peak of susceptibility to deleterious effects of anesthetics, a phenomenon particularly pronounced in vulnerable brain regions such as subiculum. With steadily accumulating evidence confirming that clinical doses and durations of anesthetics may permanently alter the physiological trajectory of brain development, we set out to investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory. Using a well-established model of anesthetic neurotoxicity in rats and mice neonatally exposed to sevoflurane, a volatile general anesthetic commonly used in pediatric anesthesia, we report that a single 6 h of continuous anesthesia administered at postnatal day (PND) 7 resulted in lasting dysregulation in subicular mRNA levels of cAMP responsive element modulator (Crem), cAMP responsive element-binding protein 1 (Creb1), and Protein phosphatase 3 catalytic subunit alpha, a subunit of calcineurin (Ppp3ca) (calcineurin) when examined during juvenile period at PND28. Given the critical role of these genes in synaptic development and neuronal plasticity, we deployed a set of histological measurements to investigate the implications of anesthesia-induced dysregulation of gene expression on morphology and complexity of surviving subicular pyramidal neurons. Our results indicate that neonatal exposure to sevoflurane induced lasting rearrangement of subicular dendrites, resulting in higher orders of complexity and increased branching with no significant effects on the soma of pyramidal neurons. Correspondingly, changes in dendritic complexity were paralleled by the increased spine density on apical dendrites, further highlighting the scope of anesthesia-induced dysregulation of synaptic development. We conclude that neonatal sevoflurane induced persistent genetic and morphological dysregulation in juvenile rodents, which could indicate heightened susceptibility toward cognitive and behavioral disorders we are beginning to recognize as sequelae of early-in-life anesthesia.


Asunto(s)
Anestésicos por Inhalación , Éteres Metílicos , Humanos , Niño , Animales , Ratas , Ratones , Sevoflurano/toxicidad , Sevoflurano/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacología , Animales Recién Nacidos , Anestésicos por Inhalación/toxicidad , Éteres Metílicos/toxicidad , Hipocampo/metabolismo
2.
Best Pract Res Clin Anaesthesiol ; 37(1): 28-39, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37295851

RESUMEN

Advances in the field of pediatric anesthesiology have enabled the performance of complex and life-saving procedures with minimal patient discomfort. However, preclinical studies over the past two decades have been reporting substantial neurotoxic potential of general anesthetics in young brain, thus challenging the safety of these agents in pediatric anesthesiology practice. Notwithstanding the overwhelming preclinical evidence, the translatability of these findings has proven inconsistent in human observational studies. The significant degree of anxiety and apprehension surrounding the uncertainty of long-term developmental outcomes following early exposure to anesthesia has prompted numerous studies around the world to investigate the putative mechanisms and translatability of preclinical findings regarding anesthesia-induced developmental neurotoxicity. Guided by the vast preclinical evidence, we aim to highlight relevant human findings presented in the currently available clinical literature.


Asunto(s)
Anestesia , Anestesiología , Anestésicos , Síndromes de Neurotoxicidad , Niño , Humanos , Anestésicos/toxicidad , Anestesia/efectos adversos , Encéfalo , Síndromes de Neurotoxicidad/etiología
3.
Br J Anaesth ; 131(2): 208-211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37173202

RESUMEN

Over the past two decades there has been an increase in reports of attention deficit-hyperactivity disorder and perhaps autism spectrum disorder that appear to coincide with a substantial number of general anaesthesia interventions during early stages of human brain development. Is there a link between anaesthesia exposure and neurocognitive effects considering the growing body of evidence in numerous animal species, including humans, that suggests long-lasting socio-affective behavioural impairments after early exposure to general anaesthesia? Could routinely used general anaesthetics contribute as environmental toxins? Here we present the case that this notion is worthy of further consideration.


Asunto(s)
Anestésicos Generales , Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Animales , Humanos , Anestesia General/efectos adversos , Anestésicos Generales/efectos adversos
4.
Neurobiol Dis ; 175: 105923, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371060

RESUMEN

Preclinical models demonstrate that nearly all anesthetics cause widespread neuroapoptosis in the developing brains of infant rodents and non-human primates. Anesthesia-induced developmental apoptosis is succeeded by prolonged neuropathology in the surviving neurons and lasting cognitive impairments, suggesting that anesthetics interfere with the normal developmental trajectory of the brain. However, little is known about effects of anesthetics on stereotyped axonal pruning, an important developmental algorithm that sculpts neural circuits for proper function. Here, we proposed that neonatal ketamine exposure may interfere with stereotyped axonal pruning of the infrapyramidal bundle (IPB) of the hippocampal mossy fiber system and that impaired pruning may be associated with alterations in the synaptic transmission of CA3 neurons. To test this hypothesis, we injected postnatal day 7 (PND7) mouse pups with ketamine or vehicle over 6 h and then studied them at different developmental stages corresponding to IPB pruning (PND20-40). Immunohistochemistry with synaptoporin (a marker of mossy fibers) revealed that in juvenile mice treated with ketamine at PND7, but not in vehicle-treated controls, positive IPB fibers extended farther into the stratum pyramidale of CA3 region. Furthermore, immunofluorescent double labeling for synaptoporin and PSD-95 strongly suggested that the unpruned IPB caused by neonatal ketamine exposure makes functional synapses. Importantly, patch-clamp electrophysiology for miniature excitatory postsynaptic currents (mEPSCs) in acute brain slices ex vivo revealed increased frequency and amplitudes of mEPSCs in hippocampal CA3 neurons in ketamine-treated groups when compared to vehicle controls. We conclude that neonatal ketamine exposure interferes with normal neural circuit development and that this interference leads to lasting increase in excitatory synaptic transmission in hippocampus.


Asunto(s)
Anestésicos , Ketamina , Ratones , Animales , Ketamina/toxicidad , Transmisión Sináptica/fisiología , Hipocampo , Sinapsis/fisiología , Fibras Musgosas del Hipocampo , Anestésicos/farmacología
5.
Curr Opin Anaesthesiol ; 35(4): 425-435, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787582

RESUMEN

PURPOSE OF REVIEW: Steadily mounting evidence of anesthesia-induced developmental neurotoxicity has been a challenge in pediatric anesthesiology. Considering that presently used anesthetics have, in different animal models, been shown to cause lasting behavioral impairments when administered at the peak of brain development, the nagging question, 'Is it time for the development of a new anesthetic' must be pondered. RECENT FINDINGS: The emerging 'soft analogs' of intravenous anesthetics aim to overcome the shortcomings of currently available clinical drugs. Remimazolam, a novel ester-analog of midazolam, is a well tolerated intravenous drug with beneficial pharmacological properties. Two novel etomidate analogs currently in development are causing less adrenocortical suppression while maintaining equally favorable hemodynamic stability and rapid metabolism. Quaternary lidocaine derivatives are explored as more potent and longer lasting alternatives to currently available local anesthetics. Xenon, a noble gas with anesthetic properties, is being considered as an anesthetic-sparing adjuvant in pediatric population. Finally, alphaxalone is being reevaluated in a new drug formulation because of its favorable pharmacological properties. SUMMARY: Although a number of exciting anesthetic drugs are under development, there is currently no clear evidence to suggest their lack of neurotoxic properties in young brain. Well designed preclinical studies are needed to evaluate their neurotoxic potential.


Asunto(s)
Anestesia , Anestésicos , Síndromes de Neurotoxicidad , Anestesia/efectos adversos , Anestésicos/efectos adversos , Anestésicos Intravenosos , Animales , Niño , Humanos , Lidocaína/efectos adversos , Midazolam , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control
6.
Br J Anaesth ; 129(4): 555-566, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35701270

RESUMEN

BACKGROUND: General anaesthesia in the neonatal period has detrimental effects on the developing mammalian brain. The impact of underlying inflammation on anaesthesia-induced developmental neurotoxicity remains largely unknown. METHODS: Postnatal day 7 (PND7) rats were randomly assigned to receive sevoflurane (3 vol% for 3 h) or carrier gas 12 h after bacterial lipopolysaccharide (LPS; 1 µg g-1) or vehicle injection. Pharmacological inhibition of caspase-1 by Vx-765 (two doses of 50 µg g-1 body weight) was used to investigate mechanistic pathways of neuronal injury. Histomorphological injury and molecular changes were quantified 2 h after the end of anaesthesia. Long-term functional deficits were tested at 5-8 weeks of age using a battery of behavioural tests in the memory and anxiety domains. RESULTS: Sevoflurane or LPS treatment increased activated caspase-3 and caspase-9 expression in the hippocampal subiculum and CA1, which was greater when sevoflurane was administered in the setting of LPS-induced inflammation. Neuronal injury induced by LPS+sevoflurane treatment resulted in sex-specific behavioural outcomes when rats were tested at 5-8 weeks of age, including learning and memory deficits in males and heightened anxiety-related behaviour in females. Hippocampal caspase-1 and NLRP1 (NLR family pyrin domain containing 1), but not NLRP3, were upregulated by LPS or LPS+sevoflurane treatment, along with related proinflammatory cytokines, interleukin (IL)-1ß, and IL-18. Pretreatment with Vx-765, a selective caspase-1 inhibitor, led to reduced IL-1ß in LPS and LPS+sevoflurane groups. Caspase-1 inhibition by Vx-765 significantly decreased activated caspase-3 and caspase-9 immunoreactivity in the subiculum. CONCLUSIONS: Systemic inflammation promotes developmental neurotoxicity by worsening anaesthesia-induced neuronal damage with sex-specific behavioural outcomes. This highlights the importance of studying anaesthesia-induced neurotoxicity in more clinically relevant settings.


Asunto(s)
Lipopolisacáridos , Síndromes de Neurotoxicidad , Animales , Animales Recién Nacidos , Caspasa 1 , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Citocinas/metabolismo , Inflamación/inducido químicamente , Interleucina-18/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Mamíferos/metabolismo , Síndromes de Neurotoxicidad/etiología , Ratas , Sevoflurano/toxicidad
7.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163060

RESUMEN

Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.


Asunto(s)
Anestésicos/toxicidad , Desarrollo Infantil/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Animales , Niño , Epigénesis Genética , Humanos , Mitocondrias/metabolismo , Síndromes de Neurotoxicidad/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163810

RESUMEN

Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.


Asunto(s)
Anestésicos Generales/efectos adversos , Red Nerviosa/efectos de los fármacos , Trastornos Neurocognitivos/inducido químicamente , Animales , Niño , Modelos Animales de Enfermedad , Humanos , Trastornos Neurocognitivos/psicología
9.
Front Behav Neurosci ; 15: 703859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790103

RESUMEN

General anesthetics are neurotoxic to the developing rodent and primate brains leading to neurocognitive and socio-affective impairment later in life. In addition, sleep patterns are important predictors of cognitive outcomes. Yet, little is known about how anesthetics affect sleep-wake behaviors and their corresponding oscillations. Here we examine how neonatal general anesthesia affects sleep and wake behavior and associated neuronal oscillations. We exposed male and female rat pups to either 6 h of continuous isoflurane or sham anesthesia (compressed air) at the peak of their brain development (postnatal day 7). One cohort of animals was used to examine neurotoxic insult 2 h post-anesthesia exposure. At weaning age, a second cohort of rats was implanted with cortical electroencephalogram electrodes and allowed to recover. During adolescence, we measured sleep architecture (divided into wake, non-rapid eye movement, and rapid eye movement sleep) and electroencephalogram power spectra over a 24 h period. We found that exposure to neonatal isoflurane caused extensive neurotoxicity but did not disrupt sleep architecture in adolescent rats. However, these animals had a small but significant reduction in beta oscillations, specifically in the 12-20 Hz beta 1 range, associated with wake behavior. Furthermore, beta oscillations play a critical role in cortical development, cognitive processing, and homeostatic sleep drive. We speculate that dysregulation of beta oscillations may be implicated in cognitive and socio-affective outcomes associated with neonatal anesthesia.

10.
Biol Reprod ; 105(3): 720-734, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34258621

RESUMEN

Each year, millions of infants and children are anesthetized for medical and surgical procedures. Yet, a substantial body of preclinical evidence suggests that anesthetics are neurotoxins that cause rapid and widespread apoptotic cell death in the brains of infant rodents and nonhuman primates. These animals have persistent impairments in cognition and behavior many weeks or months after anesthesia exposure, leading us to hypothesize that anesthetics do more than simply kill brain cells. Indeed, anesthetics cause chronic neuropathology in neurons that survive the insult, which then interferes with major aspects of brain development, synaptic plasticity, and neuronal function. Understanding the phenomenon of anesthesia-induced developmental neurotoxicity is of critical public health importance because clinical studies now report that anesthesia in human infancy is associated with cognitive and behavioral deficits. In our search for mechanistic explanations for why a young and pliable brain cannot fully recover from a relatively brief period of anesthesia, we have accumulated evidence that neonatal anesthesia can dysregulate epigenetic tags that influence gene transcription such as histone acetylation and DNA methylation. In this review, we briefly summarize the phenomenon of anesthesia-induced developmental neurotoxicity. We then discuss chronic neuropathology caused by neonatal anesthesia, including disturbances in cognition, socio-affective behavior, neuronal morphology, and synaptic plasticity. Finally, we present evidence of anesthesia-induced genetic and epigenetic dysregulation within the developing brain that may be transmitted intergenerationally to anesthesia-naïve offspring.


Asunto(s)
Anestesia/efectos adversos , Animales Recién Nacidos/genética , Epigenoma/efectos de los fármacos , Primates/genética , Animales , Humanos , Recién Nacido , Ratones , Ratas
11.
PLoS One ; 15(5): e0232530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32384091

RESUMEN

BACKGROUND: Clinical and animal studies have found that anxiety and depression are significantly more common after acute myocardial infarction (AMI). The medial prefrontal cortex (PFC) has a dual role: in higher brain functions and in cardiovascular control, making it a logical candidate for explaining the perceived bidirectional heart-brain connection. We used parallel Electrocardiography (ECG) and Electrocorticography (ECoG) registration to investigate AMI-induced changes in medial PFC bioelectrical activity in a rat model of AMI. MATERIALS AND METHODS: Adult male Wistar albino rats were used in the study. Gold-plated recording electrodes were implanted over the frontal cortex for ECoG recording. ECG was recorded via two holter electrodes attached on the skin of the back fixed in place by a jacket. Induction of AMI was performed by isoprenaline (150 mg/kg, i.p.). ECoG and ECG signals were registered at baseline, during 3 hours after isoprenaline administration and at 24 hours after isoprenaline administration. RESULTS: Significant increases of theta, alpha, and beta electroencephalographic (EEG) band power were observed in different time intervals after isoprenaline administration. Significant increase of theta band peak frequency was also observed during the first hour after isoprenaline administration. No statistically significant differences in band-power activity were found between the pre-isoprenaline measurements and 24 hours after administration. CONCLUSION: Our results demonstrate significant increases in EEG band power of alpha beta and theta bands during isoprenaline-induced AMI model. These are the first findings to connect heart damage during isoprenaline- induced AMI to disturbances in the cortical bioelectrical activity.


Asunto(s)
Isoproterenol/farmacología , Infarto del Miocardio/fisiopatología , Corteza Prefrontal/fisiopatología , Animales , Ondas Encefálicas/fisiología , Modelos Animales de Enfermedad , Electrocardiografía , Electrocorticografía , Electroencefalografía , Masculino , Infarto del Miocardio/inducido químicamente , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA