Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(17): 6764-6773, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619911

RESUMEN

Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.


Asunto(s)
Separación Celular , Técnicas Analíticas Microfluídicas , Humanos , Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Porosidad , Dimetilpolisiloxanos/química , Dispositivos Laboratorio en un Chip , Polimetil Metacrilato/química
2.
J Control Release ; 366: 160-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154542

RESUMEN

Hepatic tissue engineering has been applied for the treatment of intractable liver diseases, and hepatocyte sheets are promising for this purpose. However, hepatocyte sheets have poor survival after transplantation because of their high metabolic activity. In this study, we aimed to develop basic fibroblast growth factor (bFGF)-releasing nanoparticles to prolong the survival of hepatocyte sheets after transplantation. The nanoparticles were prepared by electrospraying a bFGF-dispersed poly(D,l-lactide-co-glycolide) emulsion. bFGF-loaded PLGA nanoparticles can be developed by optimizing the applied electrospray voltage and the oil:water ratio of the emulsion. The prepared nanoparticles exhibited prompt release at the initial duration and continuous gradual release at the subsequent duration. Hepatocyte sheet engraftment was evaluated by transplanting hepatocyte sheets containing the prepared nanoparticles into rats. The hepatocyte sheets with the prepared nanoparticles exhibited longer survival than those without the bFGF nanoparticles or solution owing to the local and continuous release of bFGF from the nanoparticles and the subsequent enhanced angiogenesis at the transplantation site. These results indicated that the prepared bFGF-releasing nanoparticles can enhance the efficiency of hepatocyte sheet transplantation. The developed bFGF-releasing nanoparticles would be useful for the transplantation of cellular tissue with post-transplantation survival challenges.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Hepatocitos , Nanopartículas , Animales , Ratas , Emulsiones , Hepatocitos/trasplante , Ingeniería de Tejidos/métodos
3.
Lab Chip ; 23(9): 2257-2267, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37038847

RESUMEN

Spheroid formation assisted by microengineered chambers is a versatile approach for morphology-controlled three-dimensional (3D) cell cultivation with physiological relevance to human tissues. However, the limitation in diffusion-based oxygen/nutrient transport has been a critical issue for the densely packed cells in spheroids, preventing maximization of cellular functions and thus limiting their biomedical applications. Here, we have developed a multiscale microfluidic system for the perfusion culture of spheroids, in which porous microchambers, connected with microfluidic channels, were engineered. A newly developed process of centrifugation-assisted replica molding and salt-leaching enabled the formation of single micrometer-sized pores on the chamber surface and in the substrate. The porous configuration generates a vertical flow to directly supply the medium to the spheroids, while avoiding the formation of stagnant flow regions. We created seamlessly integrated, all PDMS/silicone-based microfluidic devices with an array of microchambers. Spheroids of human liver cells (HepG2 cells) were formed and cultured under vertical-flow perfusion, and the proliferation ability and liver cell-specific functions were compared with those of cells cultured in non-porous chambers with a horizontal flow. The presented system realizes both size-controlled formation of spheroids and direct medium supply, making it suitable as a precision cell culture platform for drug development, disease modelling, and regenerative medicine.


Asunto(s)
Microfluídica , Esferoides Celulares , Humanos , Hepatocitos , Perfusión , Hígado
4.
J Biosci Bioeng ; 135(5): 417-422, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931921

RESUMEN

Technologies for efficiently expanding Chinese hamster ovary (CHO) cells, the primary host cells for antibody production, are of growing industrial importance. Various processes for the use of microcarriers in CHO suspension cultures have been developed, but there have been very few studies on cell-adhesive microcarriers that are similar in size to cells. In this study, we proposed a new approach to suspension cultures of CHO cells using cell-sized condensed and crosslinked gelatin microparticles (GMPs) as carriers. Unlike commercially available carriers with sizes typically greater than 100 µm, each cell can adhere to the surface of multiple particles and form loose clusters with voids. We prepared GMPs of different average diameters (27 and 48 µm) and investigated their effects on cell adhesion and cluster formation. In particular, small GMPs promoted cell proliferation and increased IgG4 production by the antibody-producing CHO cell line. The data obtained in this study suggest that cell-sized particles, rather than larger ones, enhance cell proliferation and function, providing useful insights for improving suspension-culture-based cell expansion and cell-based biologics production for a wide range of applications.


Asunto(s)
Técnicas de Cultivo de Célula , Gelatina , Cricetinae , Animales , Cricetulus , Células CHO , Proliferación Celular
5.
Analyst ; 147(8): 1622-1630, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35297918

RESUMEN

Numerous attempts have been made to develop efficient systems to purify trace amounts of circulating tumor cells (CTCs) from blood samples. However, current technologies are limited by complexities in device fabrication, system design, and process operability. Here we describe a facile, scalable, and highly efficient approach to physically capturing CTCs using a rationally designed microfluidic isolator with an array of microslit channels. The wide but thin microslit channels with a depth of several micrometers selectively capture CTCs, which are larger and less deformable than other blood cells, while allowing other blood cells to just flow through. We investigated in detail the effects of the microchannel geometry and operating parameters on the capture efficiency and selectivity of several types of cultured tumor cells spiked in blood samples as the CTC model. Additionally, in situ post-capture staining of the captured cells was demonstrated to investigate the system's applicability to clinical cancer diagnosis. The presented approach is simple in operation but significantly effective in capturing specific cells and hence it may have great potential in implementating cell physics-based CTC isolation techniques for cancer liquid biopsy.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Células Neoplásicas Circulantes/patología
6.
J Biosci Bioeng ; 133(3): 265-272, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34903469

RESUMEN

Numerous attempts have been made to organize isolated primary hepatocytes into functional three-dimensional (3D) constructs, but technologies to introduce extracellular matrix (ECM) components into such assemblies have not been fully developed. Here we report a new approach to forming hepatocyte-based 3D tissues using fibrillized collagen microparticles (F-CMPs) as intercellular binders. We created thick tissues with a thickness of ∼200 µm simply by mixing F-CMPs with isolated primary rat hepatocytes and culturing them in cell culture inserts. Owing to the incorporated F-CMPs, the circular morphology of the formed tissues was stabilized, which was strong enough to be manually manipulated and retrieved from the chamber of the insert. We confirmed that the F-CMPs dramatically improved the cell viability and hepatocyte-specific functions such as albumin production and urea synthesis in the formed tissues. The presented approach provides a versatile strategy for hepatocyte-based tissue engineering, and will have a significant impact on biomedical applications and pharmaceutical research.


Asunto(s)
Colágeno , Hepatocitos , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular , Células Cultivadas , Ratas , Ingeniería de Tejidos/métodos
7.
Mater Sci Eng C Mater Biol Appl ; 129: 112417, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579926

RESUMEN

Artificial biological scaffolds made of extracellular matrix (ECM) components, such as type I collagen, provide ideal physicochemical cues to various cell culture platforms. However, it remains a challenge to fabricate micrometer-sized ECM materials with precisely controlled morphologies that could reconstitute the 3-dimensional (3D) microenvironments surrounding cells. In the present study, we proposed a unique process to fabricate fragmented collagen microfibers using a microfluidic laminar-flow system. The continuous flow of an acidic collagen solution was neutralized to generate solid fibers, which were subsequently fragmented by applying a gentle shear stress in a polyanion-containing phosphate buffer. The morphology of the fiber fragment was controllable in a wide range by changing the type and/or concentration of the polyanion and by tuning the applied shear stress. The biological benefits of the fragmented fibers were investigated through the formation of multicellular spheroids composed of primary rat hepatocytes and microfibers on non-cell-adhesive micro-vessels. The microfibers enhanced the survival and functions of the hepatocytes and reproduced proper cell polarity, because the fibers facilitated the formation of cell-cell and cell-matrix interactions while modulating the close packing of cells. These results clearly indicated that the microengineered fragmented collagen fibers have great potential to reconstitute extracellular microenvironments for hepatocytes in 3D culture, which will be of significant benefit for cell-based drug testing and bottom-up tissue engineering.


Asunto(s)
Colágeno , Microfluídica , Animales , Matriz Extracelular , Hepatocitos , Polielectrolitos , Ratas , Ingeniería de Tejidos
8.
ACS Omega ; 5(34): 21641-21650, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905425

RESUMEN

Although many types of technologies for hydrogel-based cell cultivation have recently been developed, strategies to integrate cell-adhesive micrometer-sized supports with bulk-scale hydrogel platforms have not been fully established. Here, we present a highly unique approach to produce cell-adhesive, protein-based microfibers assisted by the sacrificial template of alginate; we applied these fibers as microengineered scaffolds for hydrogel-based cell encapsulation. Two types of microfluidic devices were designed and fabricated: a single-layered device for producing relatively thick (Φ of 10-60 µm) alginate-protein composite fibers with a uniform cross-sectional morphology and a four-layered device for preparing thinner (Φ of ∼4 µm) ones through the formation of patterned microfibers with eight distinct alginate-protein composite regions. Following chemical cross-linking of protein molecules and the subsequent removal of the sacrificial alginate from the double-network matrices, microfibers composed only of cross-linked proteins were obtained. We used gelatin, albumin, and hemoglobin as the protein material, and the gelatin-based cell-adhesive fibers were further encapsulated in hydrogels together with the mammalian cells. We clarified that the thinner fibers were especially effective in promoting cell proliferation, and the shape of the constructs was maintained even after removing the hydrogel matrices. The presented approach offers cells with biocompatible solid supports that enhance cell adhesion and proliferation, paving the way for the next generation of techniques for tissue engineering and multicellular organoid formation.

9.
Anal Chem ; 92(3): 2580-2588, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31822057

RESUMEN

Visualization and quantification of intracellular molecules of mammalian cells are crucial steps in clinical diagnosis, drug development, and basic biological research. However, conventional methods rely mostly on labor-intensive, centrifugation-based manual operations for exchanging the cell carrier medium and have limited reproducibility and recovery efficiency. Here we present a microfluidic cell processor that can perform four-step exchange of carrier medium, simply by introducing a cell suspension and fluid reagents into the device. The reaction time period for each reaction step, including fixation, membrane permeabilization, and staining, was tunable in the range of 2 to 15 min by adjusting the volume of the reaction tube connecting the neighboring exchanger modules. We double-stained the cell nucleus and cytoskeleton (F-actin) using the presented device with an overall reaction period of ∼30 min, achieving a high recovery ratio and high staining efficiency. Additionally, intracellular cytokine (IL-2) was visualized for T cells to demonstrate the feasibility of the device as a pretreatment system for downstream flow-cytometric analysis. The presented approach would facilitate the development of laborless, automated microfluidic systems that integrate cell processing and analysis operations and would pave a new path to high-throughput biological experiments.


Asunto(s)
Automatización , Citocinas/análisis , Técnicas Analíticas Microfluídicas , Animales , Línea Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Citocinas/biosíntesis , Citoesqueleto/química , Citoesqueleto/metabolismo , Diseño de Equipo , Citometría de Flujo/instrumentación , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Células 3T3 NIH
10.
ACS Appl Bio Mater ; 2(5): 2237-2245, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35030662

RESUMEN

With the recent progress in three-dimensional (3D) cell culture techniques for regenerative medicine and drug development, hydrogel-based tissue engineering approaches that can precisely organize cells into functional formats have attracted increasing attention. However, challenges remain in creating continuous microconduits within hydrogels to effectively deliver oxygen and nutrients to the embedded cells. Here we propose a one-step, fully liquid state, and all-aqueous process to create porous hydrogels that can encapsulate living cells without the need for extensive processing protocols, including the incorporation and removal of sacrificial materials. An unusual bicontinuous state of aqueous two-phase dispersion was utilized, and one of the two phases, encapsulating living cells, was rapidly photo-cross-linked to form hydrogel sponges. We optimized the volumetric mixing ratio of gelatin methacrylate (GelMA)-rich and polyethylene glycol (PEG)-rich solutions and investigated the effects of the formed continuous microconduits on the cell functions by creating liver-tissue mimetic 3D constructs. The presented technology provides a facile and versatile strategy for fabricating microstructured hydrogels for cell culture and would bring new insights for the development of porous materials by fully aqueous bicontinuous dispersions.

11.
RSC Adv ; 9(16): 9136-9144, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517655

RESUMEN

Vascular tissue models created in vitro are of great utility in the biomedical research field, but versatile, facile strategies are still under development. In this study, we proposed a new approach to prepare vascular tissue models in PDMS-based composite channel structures embedded with barium salt powders. When a cell-containing hydrogel precursor solution was continuously pumped in the channel, the precursor solution in the vicinity of the channel wall was selectively gelled because of the barium ions as the gelation agent supplied to the flow. Based on this concept, we were able to prepare vascular tissue models, with diameters of 1-2 mm and with tunable morphologies, composed of smooth muscle cells in the hydrogel matrix and endothelial cells on the lumen. Perfusion culture was successfully performed under a pressurized condition of ∼120 mmHg. The presented platform is potentially useful for creating vascular tissue models that reproduce the physical and morphological characteristics similar to those of vascular tissues in vivo.

12.
Regen Ther ; 8: 65-72, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30271868

RESUMEN

INTRODUCTION: Islet transplantation is one of the most promising therapeutic approaches for patients with severe type 1 diabetes mellitus (T1DM). Transplantation of engineered islet cell sheets holds great potential for treating T1DM as it enables the creation of stable neo-islet tissues. However, a large mass of islet cell sheets is required for the subcutaneous transplantation to reverse hyperglycemia in diabetic mice. Here, we investigated whether the liver surface could serve as an alternative site for islet cell sheet transplantation. METHODS: Dispersed rat islet cells (0.8 × 106 cells) were cultured on laminin-332-coated thermoresponsive culture dishes. After 2 days of cultivation, we harvested the islet cell sheets by lowering the culture temperature using a support membrane with a gelatin gel. We transplanted two recovered islet cell sheets into the subcutaneous space or onto the liver surface of severe combined immunodeficiency (SCID) mice with streptozocin-induced diabetes. RESULTS: In the liver surface group, the non-fasting blood glucose level decreased rapidly within several days after transplantation. In marked contrast, the hyperglycemia state was maintained in the subcutaneous space transplantation group. The levels of rat C-peptide and insulin in the liver surface group were significantly higher than those in the subcutaneous space group. An immunohistological analysis confirmed that most of the islet cells engrafted on the liver surface were insulin-positive. The CD31-positive endothelial cells formed vascular networks within the neo-islets and in the surrounding tissues. In contrast, viable islet cells were not found in the subcutaneous space group. CONCLUSIONS: Compared with the subcutaneous space, a relatively small mass of islet cell sheets was enough to achieve normoglycemia in diabetic mice when the liver surface was selected as the transplantation site. Our results demonstrate that the optimization of the transplantation site for islet cell sheets leads to significant improvements in the therapeutic efficiency for T1DM.

13.
Lab Chip ; 18(9): 1378-1387, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29658964

RESUMEN

Cell migration and invasion are of significant importance in physiological phenomena, including wound healing and cancer metastasis. Here we propose a new system for quantitatively evaluating cancer cell invasion in a three-dimensional (3D), in vivo tissue-like environment. This system uses composite hydrogel microfibers whose cross section has a relatively soft micropassage region and that were prepared using a multilayered microfluidic device; cancer cells are encapsulated in the core and fibroblasts are seeded in the shell regions surrounding the core. Cancer cell proliferation is guided through the micropassage because of the physical restriction imposed by the surrounding solid shell regions. Quantitative analysis of cancer cell invasion is possible simply by counting the cancer cell colonies that form outside the fiber. This platform enables the evaluation of anticancer drug efficacy (cisplatin, paclitaxel, and 5-fluorouracil) based on the degree of invasion and the gene expression of cancer cells (A549 cells) with or without the presence of fibroblasts (NIH-3T3 cells). The presented hydrogel fiber-based migration assays could be useful for studying cell behaviors under 3D coculture conditions and for drug screening and evaluation.


Asunto(s)
Movimiento Celular/fisiología , Técnicas de Cocultivo/instrumentación , Hidrogeles/química , Técnicas Analíticas Microfluídicas/instrumentación , Invasividad Neoplásica/fisiopatología , Células A549 , Animales , Diseño de Equipo , Humanos , Ratones , Células 3T3 NIH
14.
J Biosci Bioeng ; 126(1): 111-118, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29502942

RESUMEN

Although the reconstruction of functional 3D liver tissue models in vitro presents numerous challenges, it is in great demand for drug development, regenerative medicine, and physiological studies. Here we propose a new approach to perform perfusion cultivation of liver cells by assembling cell-laden hydrogel microfibers. HepG2 cells were densely packed into the core of sandwich-type anisotropic microfibers, which were produced using microfluidic devices. The obtained microfibers were bundled up and packed into a perfusion chamber, and perfusion cultivation was performed. We evaluated cell viability and functions, and also monitored the oxygen consumption. Furthermore, fibers covered with vascular endothelial cells were united during the perfusion culture, to form vascular network-like conduits between fibers. The presented technique can structurally mimic the hepatic lobule in vivo and could prove to be a useful model for various biomedical research applications.


Asunto(s)
Técnicas de Cultivo de Célula , Hepatocitos/citología , Hígado/citología , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Animales , Bovinos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Células Hep G2 , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Dispositivos Laboratorio en un Chip , Microtecnología/instrumentación , Microvasos/citología , Perfusión , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Andamios del Tejido
15.
J Hepatol ; 68(4): 744-753, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29288124

RESUMEN

BACKGROUND & AIMS: Since the first account of the myth of Prometheus, the amazing regenerative capacity of the liver has fascinated researchers because of its enormous medical potential. Liver regeneration is promoted by multiple types of liver cells, including hepatocytes and liver non-parenchymal cells (NPCs), through complex intercellular signaling. However, the mechanism of liver organogenesis, especially the role of adult hepatocytes at ectopic sites, remains unknown. In this study, we demonstrate that hepatocytes alone spurred liver organogenesis to form an organ-sized complex 3D liver that exhibited native liver architecture and functions in the kidneys of mice. METHODS: Isolated hepatocytes were transplanted under the kidney capsule of monocrotaline (MCT) and partial hepatectomy (PHx)-treated mice. To determine the origin of NPCs in neo-livers, hepatocytes were transplanted into MCT/PHx-treated green fluorescent protein transgenic mice or wild-type mice transplanted with bone marrow cells isolated from green fluorescent protein-mice. RESULTS: Hepatocytes engrafted at the subrenal space of mice underwent continuous growth in response to a chronic hepatic injury in the native liver. More than 1.5 years later, whole organ-sized liver tissues with greater mass than those of the injured native liver had formed. Most remarkably, we revealed that at least three types of NPCs with similar phenotypic features to the liver NPCs were recruited from the host tissues including bone marrow. The neo-livers in the kidney exhibited liver-specific functions and architectures, including sinusoidal vascular systems, zonal heterogeneity, and emergence of bile duct cells. Furthermore, the neo-livers successfully rescued the mice with lethal liver injury. CONCLUSION: Our data clearly show that adult hepatocytes play a leading role as organizer cells in liver organogenesis at ectopic sites via NPC recruitment. LAY SUMMARY: The role of adult hepatocytes at ectopic locations has not been clarified. In this study, we demonstrated that engrafted hepatocytes in the kidney proliferated, recruited non-parenchymal cells from host tissues including bone marrow, and finally created an organ-sized, complex liver system that exhibited liver-specific architectures and functions. Our results revealed previously undescribed functions of hepatocytes to direct liver organogenesis through non-parenchymal cell recruitment and organize multiple cell types into a complex 3D liver at ectopic sites. Transcript profiling: Microarray data are deposited in GEO (GEO accession: GSE99141).


Asunto(s)
Hepatocitos/fisiología , Riñón/citología , Hígado/embriología , Organogénesis , Animales , Movimiento Celular , Proliferación Celular , Hepatocitos/trasplante , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL
16.
J Tissue Eng Regen Med ; 11(7): 2071-2080, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-26549508

RESUMEN

Cell sheet stratification technology has been used for reconstituting highly functional three-dimensional (3D) hepatic tissues in vitro. Triple-layered hepatic tissues with a hepatocyte-specific polarity were fabricated by sandwiching a hepatocyte sheet (Hep sheet) between two endothelial cell (EC) sheets. The morphological and functional characteristics of the triple-layered hepatic construct (EC-Hep-EC) were evaluated and compared with those of a double-layered hepatic construct with a single EC sheet (Hep-EC) and a Hep sheet only. Transmission electron microscope (TEM) observations revealed that the extracellular matrix was observed to be deposited in the space between the ECs and hepatocytes on both the upper and lower sides of the hepatocytes in the EC-Hep-EC construct. Immunohistochemistry with basolateral (CD147) and apical [multidrug resistance-associated protein (MRP2)] membrane polarity markers clearly showed the recovery of in vivo-like hepatocyte polarization in the EC-Hep-EC group. In addition, hepatocyte-specific functions, including albumin secretion, ammonia removal and the induction of cytochrome P450, were also highly preserved. The presented technology for stratifying multiple cell sheets was simple in operation and successfully reproduced both the heterotypic/homotypic cell-cell and cell-matrix interactions with the inherent hepatocyte configurations, thus closely mimicking the in vivo environment. The triple-layered 3D hepatic constructs could therefore be valuable as a new experiment tool for drug-screening tests, an implantable tissue model for cell-based therapies and an efficient culture platform for bioartificial liver devices. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Endotelio/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ingeniería de Tejidos/métodos , Animales , Endotelio/citología , Hepatocitos/citología , Hígado/citología , Masculino , Ratas , Ratas Endogámicas F344
17.
ACS Biomater Sci Eng ; 3(9): 2144-2154, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440563

RESUMEN

In closely packed artificial 3D cellular constructs, cells located near the center of the constructs are not functional because of the limited supply of oxygen and nutrition. Here we describe a simple, unique, and highly versatile approach to organizing cells into thick but porous 3D tissues, using cell-sized collagen microparticles as particulate scaffolds. When cells and particles are mixed and seeded in a noncell-adhesive planar chamber, they gather to form sheet-shaped structures with a thickness of 100-150 µm. In the construct, uniformly distributed particles work as a binder between cells and modulate the strong intercellular contraction. We confirmed that several factors, including the particle/cell ratio and particle size, critically affect the stability and shrink behaviors of porous tissues prepared using mouse embryonic fibroblasts (NIH-3T3 cells). Cross-sectional observation, together with cell proliferation and viability assays, revealed that the cells composing the tissues are functional primarily because interior pores between cells/particles worked as a path for efficient molecular transport. Furthermore, we prepared thick cell tissues of a liver model using human hepatocarcinoma cells (HepG2 cells), and confirmed that liver-specific functions were upregulated when composite tissues were formed using collagen microparticles prepared with several different stabilization protocols by glutaraldehyde, genipin, and methyl acetate). The process presented would be highly useful in enabling one-step production of thick cellular constructs in which porosity and morphology are tunable.

18.
Heliyon ; 2(6): e00129, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27441299

RESUMEN

Pancreatic islets are heterogeneous clusters mainly composed of α and ß cells, and these clusters range in diameter from 50 to several hundred micrometers. Native small islets are known to have a higher insulin secretion ability in vitro and to provide better transplantation outcomes when compared with large islets. In this study, we prepared microengineered pseudo-islets from dispersed rat islet cells using precisely-fabricated agarose gel-based microwells with different diameters (100, 300, or 500 µm) to investigate the function and survival of islet cell aggregates with well-controlled sizes. We observed that dead cells were rarely present in the small pseudo-islets with an average diameter of ∼60 µm prepared using 100 µm microwells. In contrast, we observed more dead cells in the larger pseudo-islets prepared using 300 and 500 µm microwells. The relative amount of hypoxic cells was significantly low in the small pseudo-islets whereas a hypoxic condition was present in the core region of the larger pseudo-islets. In addition, we found that the small-sized pseudo-islets reconstituted the in vivo-tissue like arrangement of the α and ß cells, and restored the high insulin secretory capacity in response to high glucose. These results clearly suggest that precise size control of pseudo-islets is essential for maintaining islet cell function and survival in vitro. The small-sized pseudo-islets may be advantageous for providing a better therapeutic approach for treating type 1 diabetes mellitus via islet reorganization and transplantation.

19.
Lab Chip ; 15(19): 3941-51, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26308935

RESUMEN

The reconstitution of extracellular matrix (ECM) components in three-dimensional (3D) cell culture environments with microscale precision is a challenging issue. ECM microparticles would potentially be useful as solid particulate scaffolds that can be incorporated into 3D cellular constructs, but technologies for transforming ECM proteins into cell-sized stable particles are currently lacking. Here, we describe new processes to produce highly condensed collagen microparticles by means of droplet microfluidics or membrane emulsification. Droplets of an aqueous solution of type I collagen were formed in a continuous phase of polar organic solvent followed by rapid dissolution of water molecules into the continuous phase because the droplets were in a non-equilibrium state. We obtained highly unique, disc-shaped condensed collagen microparticles with a final collagen concentration above 10% and examined factors affecting particle size and morphology. After testing the cell-adhesion properties on the collagen microparticles, composite multicellular spheroids comprising the particles and primary rat hepatocytes were formed using microfabricated hydrogel chambers. We found that the ratio of the cells and particles is critical in terms of improvement of hepatic functions in the composite spheroids. The presented methodology for incorporating particulate-form ECM components in multicellular spheroids would be advantageous because of the biochemical similarity with the microenvironments in vivo.


Asunto(s)
Colágeno Tipo I/química , Hepatocitos/citología , Microesferas , Esferoides Celulares/citología , Animales , Adhesión Celular , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microscopía Fluorescente , Células 3T3 NIH , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Esferoides Celulares/metabolismo
20.
Biomaterials ; 65: 66-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26142777

RESUMEN

Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.


Asunto(s)
Fibroblastos/citología , Fibroblastos/trasplante , Hepatocitos/citología , Hepatocitos/trasplante , Hígado/citología , Tejido Subcutáneo/irrigación sanguínea , Ingeniería de Tejidos/métodos , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Tejido Subcutáneo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...