Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 255: 119179, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768882

RESUMEN

Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.


Asunto(s)
Contaminantes Atmosféricos , Altitud , Ciudades , Material Particulado , Material Particulado/análisis , Bolivia/epidemiología , Humanos , Contaminantes Atmosféricos/análisis , Adulto , Infecciones del Sistema Respiratorio/epidemiología , Oxidación-Reducción , Masculino , Persona de Mediana Edad , Femenino , Neumonía/epidemiología , Neumonía/inducido químicamente , Adulto Joven , Adolescente , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Niño , Monitoreo del Ambiente/métodos , Preescolar
2.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664406

RESUMEN

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

3.
Sci Total Environ ; 923: 171466, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447718

RESUMEN

A comprehensive chemical characterization of fine particulate matter (PM2.5) was conducted at an urban site in one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PM2.5 samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation in vivo as an initial step of health effects due to oxidative stress. The PM2.5 concentrations ranged from 8.3 to 148 µg m-3, with an annual average of 40.2 ± 26.3 µg m-3 (from September 2019 to December 2020). Our results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model showed the contribution of nine PM2.5 sources. The main anthropogenic sources contributing to the PM mass concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %) and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in Vietnam. The average OPv levels obtained in our study were 3.9 ± 2.4 and 4.5 ± 3.2 nmol min-1 m-3 for OPDTT and OPAA, respectively. We assessed the contribution to OPDTT and OPAA of each PM2.5 source by applying multilinear regression models. It shows that the sources associated with human activities (HFO combustion, biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-term chemical characterization of PM2.5, providing also a link between emission sources, ambient concentrations and exposure to air pollution at an urban site in Hanoi, Vietnam.

4.
Environ Health Perspect ; 131(1): 17004, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695591

RESUMEN

BACKGROUND: Fine particulate matter (PM2.5) has been found to be detrimental to respiratory health of children, but few studies have examined the effects of prenatal PM2.5 oxidative potential (OP) on lung function in infants and preschool children. OBJECTIVES: We estimated the associations of personal exposure to PM2.5 and OP during pregnancy on offspring objective lung function parameters and compared the strengths of associations between both exposure metrics. METHODS: We used data from 356 mother-child pairs from the SEPAGES cohort. PM filters collected twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple-breath washout (N2MBW) test, performed at 6 wk, and airwave oscillometry (AOS) performed at 3 y. Associations of prenatal PM2.5 mass and OP with lung function parameters were estimated using multiple linear regressions. RESULTS: In neonates, an interquartile (IQR) increase in OPvDTT (0.89 nmol/min/m3) was associated with a decrease in functional residual capacity (FRC) measured by N2MBW [ß=-2.26mL; 95% confidence interval (CI): -4.68, 0.15]. Associations with PM2.5 showed similar patterns in comparison with OPvDTT but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs (Rrs7-19) from AOS tended to be associated with higher OPvDTT (ß=0.09 hPa×s/L; 95% CI: -0.06, 0.24) and OPvAA (IQR=1.14 nmol/min/m3; ß=0.12 hPa×s/L; 95% CI: -0.04, 0.27) but not with PM2.5 (IQR=6.9 µg/m3; ß=0.02 hPa×s/L; 95% CI: -0.13, 0.16). Results for FRC and Rrs7-19 remained similar in OP models adjusted on PM2.5. DISCUSSION: Prenatal exposure to OPvDTT was associated with several offspring lung function parameters over time, all related to lung volumes. https://doi.org/10.1289/EHP11155.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Femenino , Embarazo , Humanos , Lactante , Preescolar , Estudios Prospectivos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Efectos Tardíos de la Exposición Prenatal/epidemiología , Exposición a Riesgos Ambientales/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Pulmón , Estrés Oxidativo , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
5.
J Expo Sci Environ Epidemiol ; 33(3): 416-426, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36369373

RESUMEN

BACKGROUND: Prenatal exposure to fine particulate matter (PM2.5) assessed through its mass concentration has been associated with foetal growth restriction in studies based on outdoor levels. Oxidative potential of PM2.5 (OP) is an emerging metric a priori relevant to mechanisms of action of PM on health, with very limited evidence to indicate its role on birth outcomes. OBJECTIVES: We investigated the association of OP with birth outcomes and compared it with that of PM2.5 mass concentration. METHODS: 405 pregnant women from SEPAGES cohort (Grenoble area) carried PM2.5 personal dosimeters for one or two one-week periods. OP was measured using dithiothreitol (DTT) and ascorbic acid (AA) assays from the collected filters. Associations of each exposure metric with offspring weight, height, and head circumference at birth were estimated adjusting for potential confounders. RESULTS: The correlation between PM2.5 mass concentration and [Formula: see text] was 0.7. An interquartile range increase in .. was associated with reduced weight (adjusted change, -64 g, -166 to -11, p = 0.02) and height (-4 mm, -6 to -1, p = 0.01) at birth. PM2.5 mass concentration showed similar associations with weight (-53 g, -99 to -8, p = 0.02) and height (-2 mm, -5 to 0, p = 0.05). In birth height models mutually adjusted for the two exposure metrics, the association with [Formula: see text] was less attenuated than that with mass concentration, while for weight both effect sizes attenuated similarly. There was no clear evidence of associations with head circumference for any metric, nor for [Formula: see text] with any growth parameter. IMPACT: PM2.5 pregnancy exposure assessed from personal dosimeters was associated with altered foetal growth. Personal OP exposure was associated with foetal growth restrictions, specifically decreased weight and height at birth, possibly to a larger extent than PM2.5 mass concentration alone. These results support OP assessed from DTT as being a health-relevant metric. Larger scale cohort studies are recommended to support our findings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Recién Nacido , Humanos , Femenino , Embarazo , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios de Cohortes , Oxidación-Reducción , Estrés Oxidativo
6.
Sci Total Environ ; 800: 149486, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391157

RESUMEN

This study evaluates geochemical and oxidative potential (OP) properties of the respirable (finer than 4 µm) fractions of 22 powdered coal samples from channel profiles (CP4) in Chinese mined coals. The CP4 fractions extracted from milled samples of 22 different coals were mineralogically and geochemically analysed and the relationships with the OP evaluated. The evaluation between CP4/CP demonstrated that CP4 increased concentrations of anatase, Cs, W, Zn and Zr, whereas sulphates, Fe, S, Mo, Mn, Hf and Ge decreased their CP4 concentrations. OP results from ascorbic acid (AA), glutathione (GSH) and dithiothreitol (DTT) tests evidenced a clear link between specific inorganic components of CP4 with OPAA and the organic fraction of OPGSH and OPDTT. Correlation analyses were performed for OP indicators and the geochemical patterns of CP4. These were compared with respirable dust samples from prior studies. They indicate that Fe (r = 0.83), pyrite (r = 0.66) and sulphate minerals (r = 0.42) (tracing acidic species from pyrite oxidation), followed by S (r = 0.50) and ash yield (r = 0.46), and, to a much lesser extent, Ti, anatase, U, Mo, V and Pb, are clearly linked with OPAA. Moreover, OPGSH correlation was identified by organic matter, as moisture (r = 0.73), Na (r = 0.56) and B (r = 0.51), and to a lesser extent by the coarse particle size, Ca and carbonate minerals. In addition, Mg (r = 0.70), B (r = 0.47), Na (r = 0.59), Mn, Ba, quartz, particle size and Sr regulate OPDTT correlations. These became more noticeable when the analysis was done for samples of the same type of coal rank, in this case, bituminous.


Asunto(s)
Carbón Mineral , Polvo , China , Carbón Mineral/análisis , Polvo/análisis , Estrés Oxidativo , Polvos
7.
Sci Total Environ ; 783: 146952, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33866176

RESUMEN

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.

8.
Environ Res ; 192: 110241, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980301

RESUMEN

Since cacao beans accumulate Cd in high levels and restrictions have been imposed on safe levels of chocolate consumption, concern about whether or not cacao trees store other toxic elements seems to be inevitable. Following a previous study in Ecuador examining Cd content in five cacao varieties collected in pristine areas and in places impacted by oil activities, we present here the concentrations of 11 trace elements (TEs) (As, Ba, Co, Cu, Cr, Mo, Mn, Ni, Pb, V and Zn) in soils, cacao tissues (leaves, pod husks, beans) and cocoa liquor (CL). Several TEs showed concentrations in topsoils above the Ecuadorian limits, and may have a mixed natural and anthropogenic origin. Ba and Mo concentrations in cacao tissues are slightly higher than those reported in other surveys, but this was not the case for toxic elements (As and Pb). TE contents are lower in CL, than in beans, except for Pb and Co, but no risk was identified for human health. Compared with control areas, Enrichment Factors were below 2 in impacted areas, except for Ba. Transfer factors (from soils to cacao) indicated that cacao does not accumulate TEs. A positive correlation was found between Cd and Zn in topsoils and cacao tissues for the CCN-51 variety, and between Cd and Ni for the Nacional variety. Identifying patterns of TE distribution and potential interactions in order to explain plant internal mechanisms, which is also dependent on the cacao variety, is a difficult task and needs further research.


Asunto(s)
Cacao , Metales Pesados , Contaminantes del Suelo , Oligoelementos , Cadmio/análisis , Ecuador , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Oligoelementos/análisis
9.
Nature ; 587(7834): 414-419, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208962

RESUMEN

Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Bronquios/citología , Células Cultivadas , Ciudades , Células Epiteliales , Europa (Continente) , Humanos , Modelos Teóricos , Oxidación-Reducción , Población Rural , Población Urbana
10.
PLoS One ; 15(11): e0233425, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33206642

RESUMEN

Ambient air pollution is one of the leading five health risks worldwide. One of the most harmful air pollutants is particulate matter (PM), which has different physical characteristics (particle size and number, surface area and morphology) and a highly complex and variable chemical composition. Our goal was first to comparatively assess the effects of exposure to PM regarding cytotoxicity, release of pro-inflammatory mediators and gene expression in human bronchial epithelia (HBE) reflecting normal and compromised health status. Second, we aimed at evaluating the impact of various PM components from anthropogenic and biogenic sources on the cellular responses. Air-liquid interface (ALI) cultures of fully differentiated HBE derived from normal and cystic fibrosis (CF) donor lungs were exposed at the apical cell surface to water-soluble PM filter extracts for 4 h. The particle dose deposited on cells was 0.9-2.5 and 8.8-25.4 µg per cm2 of cell culture area for low and high PM doses, respectively. Both normal and CF HBE show a clear dose-response relationship with increasing cytotoxicity at higher PM concentrations. The concurrently enhanced release of pro-inflammatory mediators at higher PM exposure levels links cytotoxicity to inflammatory processes. Further, the PM exposure deregulates genes involved in oxidative stress and inflammatory pathways leading to an imbalance of the antioxidant system. Moreover, we identify compromised defense against PM in CF epithelia promoting exacerbation and aggravation of disease. We also demonstrate that the adverse health outcome induced by PM exposure in normal and particularly in susceptible bronchial epithelia is magnified by anthropogenic PM components. Thus, including health-relevant PM components in regulatory guidelines will result in substantial human health benefits and improve protection of the vulnerable population.


Asunto(s)
Aerosoles/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Fibrosis Quística/complicaciones , Células Epiteliales/patología , Inflamación/etiología , Estrés Oxidativo , Mucosa Respiratoria/patología , Células Cultivadas , Humanos , Inflamación/patología , Mediadores de Inflamación , Tamaño de la Partícula , Material Particulado/efectos adversos
11.
Front Microbiol ; 11: 576750, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519725

RESUMEN

Primary Biogenic Organic Aerosols (PBOA) were recently shown to be produced by only a few types of microorganisms, emitted by the surrounding vegetation in the case of a regionally homogeneous field site. This study presents the first comprehensive description of the structure and main sources of airborne microbial communities associated with temporal trends in Sugar Compounds (SC) concentrations of PM10 in 3 sites under a climatic gradient in France. By combining sugar chemistry and DNA Metabarcoding approaches, we intended to identify PM10-associated microbial communities and their main sources at three sampling-sites in France, under different climates, during the summer of 2018. This study accounted also for the interannual variability in summer airborne microbial community structure (bacteria and fungi only) associated with PM10-SC concentrations during a 2 consecutive years' survey at one site. Our results showed that temporal changes in PM10-SC in the three sites are associated with the abundance of only a few specific taxa of airborne fungi and bacterial. These taxa differ significantly between the 3 climatic regions studied. The microbial communities structure associated with SC concentrations of PM10 during a consecutive 2-year study remained stable in the rural area. Atmospheric concentration levels of PM10-SC species varied significantly between the 3 study sites, but with no clear difference according to site typology (rural vs. urban), suggesting that SC emissions are related to regional rather than local climatic characteristics. The overall microbial beta diversity in PM10 samples is significantly different from that of the main vegetation around the urban sites studied. This indicates that the airborne microorganisms at these urban sites are not solely from the immediate surrounding vegetation, which contrasts with observations at the scale of a regionally homogeneous rural site in 2017. These results improve our understanding of the spatial behavior of tracers of PBOA emission sources, which need to be better characterized to further implement this important mass fraction of Organic Matter (OM) in Chemical Transport models (CTM).

12.
Sci Total Environ ; 705: 135330, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31835192

RESUMEN

With over 8 million inhabitants and 4 million motor vehicles on the streets, Tehran is one of the most crowded and polluted cities in the Middle East. Frequent exceedances of national daily PM2.5 limit have been reported in this city during the last decade, yet, the chemical composition and sources of fine particles are poorly determined. In the present study, 24-hour PM2.5 samples were collected at two urban sites during two separate campaigns, a one-year period from 2014 to 2015 and another three-month period at the beginning of 2017. Concentrations of organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals and specific organic molecular markers were measured by chemical analysis of filter samples. The dominant mass components were organic matter (OM), sulfate and EC. With a 20% water-soluble organic carbon (WSOC) fraction, the predominance of primary anthropogenic sources (i.e. fossil fuel combustion) was anticipated. A positive matrix factorization (PMF) analysis using the ME-2 (Multilinear Engine-2) solver was then applied to this dataset. 5 factors were identified by Marker-PMF, named as traffic exhaust (TE), biomass burning (BB), industries (Ind.), nitrate-rich and sulfate-rich. Another 4 factors were identified by Metal-PMF, including, dust, vehicles (traffic non-exhaust, TNE), industries (Ind.) and heavy fuel combustion (HFC). Traffic exhaust was the dominant source with 44.5% contribution to total quantified PM2.5 mass. Sulfate-rich (24.2%) and nitrate-rich (18.4%) factors were the next major contributing sources. Dust (4.4%) and biomass burning (6.7%) also had small contributions while the total share of all other factors was < 2%. Investigating the correlations of different factors between the two sampling sites showed that traffic emissions and biomass burning were local, whereas dust, heavy fuel combustion and industrial sources were regional. Results of this study indicate that gas- and particle-phase pollutants emitted from fossil fuel combustion (mobile and stationary) are the principal origin of both primary and secondary fine aerosols in Tehran.

13.
Sci Rep ; 7(1): 11617, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912590

RESUMEN

Particulate matter (PM) induces oxidative stress in vivo, leading to adverse health effects. Oxidative potential (OP) of PM is increasingly studied as a relevant metric for health impact (instead of PM mass concentration) as much of the ambient particle mass do not contribute to PM toxicity. Several assays have been developed to quantify PM oxidative potential and a widely used one is the acellular dithiothreitol (DTT) assay. However in such assays, particles are usually extracted with methanol or Milli-Q water which is unrepresentative of physiological conditions. For this purpose, OPDTT measurements after simulated lung fluids (SLF) extraction, in order to look at the impact of simulated lung fluid constituents, were compared to Milli-Q water extraction measurements. Our major finding is a significant decrease of the OPDTT when the artificial lysosomal fluid (ALF) solution was used. Indeed, ligand compounds are present in the SLF solutions and some induce a decrease of the OP when compared to water extraction. Our results suggest that the effect of ligands and complexation in lining fluids towards PM contaminants probably has been underestimated and should be investigated further.


Asunto(s)
Pulmón/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/efectos adversos , Material Particulado/química , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Biomarcadores , Concentración de Iones de Hidrógeno , Ligandos , Material Particulado/análisis
14.
Nanotoxicology ; 11(2): 247-255, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28151030

RESUMEN

Titanium-dioxide nanoparticles (TiO2-NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO2-NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO2-NPs at concentrations ranging from 0.05 to 500 mg kg-1 dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO2-NPs were measured in the spiking suspensions, as they can be important drivers of TiO2-NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO2-NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg-1) and the highest (100 and 500 mg kg-1) TiO2-NPs concentrations. Path analyses indicated that TiO2-NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO2-NPs impact on soil microorganisms.


Asunto(s)
Nanopartículas/toxicidad , Microbiología del Suelo , Suelo/química , Titanio/toxicidad , Amoníaco/análisis , Archaea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Nanopartículas/química , Nitrificación , Nitrobacter/efectos de los fármacos , Oxidación-Reducción , Microbiología del Suelo/normas , Titanio/química
15.
Environ Sci Technol ; 50(19): 10693-10699, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27589234

RESUMEN

Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO2) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.


Asunto(s)
Microbiología del Suelo , Suelo , Archaea , Nanopartículas/toxicidad , Nitrificación , Titanio/toxicidad
16.
J Hazard Mater ; 317: 552-562, 2016 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-27344256

RESUMEN

Refined exposure assessments were realized for children, 7-9yrs, in the mining/smelting city of Oruro, Bolivia. Aerosols (PM>2.5, PM1-2.5, PM0.4-1 and PM0.5) and dust (separated in different particle size fractions: 2000-200µm, 200-50µm, 50-20µm, 20-2µm and <2µm) were sampled on football fields highly frequented by children in both the mining and smelting areas. Trace element concentrations (Ag, As, Cd, Cu, Pb, Sb, Sn and Zn) in each size fraction of dust and aerosols, lung bioaccessibility of metals in aerosols, and gastric bioaccessibility of metals in dust were measured. Exposure was assessed considering actual external exposure (i.e. exposure pathways: metals inhaled and ingested) and simulated internal exposure (i.e., complex estimation using gastric and lung bioaccessibility, deposition and clearance of particles in lungs). Significant differences between external and simulated internal exposure were attributed to dissemblances in gastric and lung bioaccessibilities, as well as metal distribution within particle size range, revealing the importance of both parameters in exposure assessment.


Asunto(s)
Contaminantes Atmosféricos/análisis , Polvo/análisis , Exposición por Inhalación/análisis , Metales Pesados/análisis , Aerosoles , Contaminantes Atmosféricos/farmacocinética , Disponibilidad Biológica , Bolivia , Niño , Humanos , Metales Pesados/farmacocinética , Minería , Modelos Biológicos , Tamaño de la Partícula
17.
J Hazard Mater ; 300: 538-545, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26253233

RESUMEN

Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

18.
Environ Res ; 133: 185-94, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24959986

RESUMEN

This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO(4), Sb(2)O(3), and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl2~CdO>CuO>PbO>ZnO>PbSO(4)>Sb(2)O(3). Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb(2)O(3) threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management.


Asunto(s)
Contaminantes Ambientales/toxicidad , Nanopartículas del Metal/toxicidad , Metales/toxicidad , Material Particulado/toxicidad , Oligoelementos/toxicidad , Aliivibrio fischeri , Compuestos de Cadmio/toxicidad , Línea Celular Tumoral , Cobre/toxicidad , Ecotoxicología/normas , Humanos , Plomo/toxicidad , Nanopartículas del Metal/química , Metales/química , Estrés Oxidativo , Óxidos/toxicidad , Material Particulado/química , Medición de Riesgo , Óxido de Zinc/toxicidad
19.
Environ Sci Technol ; 45(18): 7888-95, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21800914

RESUMEN

Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Bronquios/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Plomo/toxicidad , Metalurgia , Material Particulado/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/metabolismo , Animales , Disponibilidad Biológica , Bronquios/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Suministros de Energía Eléctrica , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Humanos , Técnicas In Vitro , Plomo/análisis , Plomo/metabolismo , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/metabolismo , Reciclaje , Porcinos
20.
Environ Sci Technol ; 44(3): 1036-42, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20063891

RESUMEN

Metal uptake by plants occurs by soil-root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce ( Lactuca sativa ) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 +/- 50 mg Pb kg(-1) (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Lactuca/metabolismo , Plomo/metabolismo , Hojas de la Planta/metabolismo , Contaminantes Atmosféricos/química , Atmósfera , Monitoreo del Ambiente , Industrias , Plomo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...