Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563005

RESUMEN

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Asunto(s)
Benzoquinonas , Nigella sativa , Nigella , Nigella sativa/química , Extractos Vegetales/farmacología , Cromatografía de Gases y Espectrometría de Masas , Flavonoides
2.
Open Life Sci ; 18(1): 20220721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744453

RESUMEN

The optimization of the batch size experiment was run for a hydraulic retention time of 45 days using proteolytic enzyme pretreatment. The highest amounts of biogas were produced in comparison to conventional BDS (25:75), which is not processed with enzymes, and there was an increase in the biogas generation of 13.9 and 18.57%. The kinetic models show the goodness of fit between 0.993 and 0.998 and the correlation coefficient's value domain was [-1, 1] from a statistical perspective. The Box-Behnken design was carried out using the response surface methodology at different levels of independent parameters to optimize the process. Different instruments were evaluated to determine the chemical structure change and the contamination of the different treatments and the raw sample of tannery fleshings was determined. Thermogravimetric analysis was conducted to determine the loss of weight on thermal degradation. The Fourier transform infrared spectrometry was carried out to determine the different functional groups, such as -OH, -CH, -NH, and C-O, present in the samples of tannery fleshings. Scanning electron microscopy and energy dispersive X-ray analysis were carried out to determine the morphological alterations in the substrate, digestate, enzyme-pretreated fleshings, and the chemical composition of samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...