Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231198

RESUMEN

Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.


Asunto(s)
Caspasas , Inflamasomas , Animales , Ratones , Caspasas/genética , Citosol , Lipopolisacáridos , Proteolisis
2.
PLoS Pathog ; 19(6): e1010767, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37279255

RESUMEN

The inflammatory cytokine tumor necrosis factor (TNF) is necessary for host defense against many intracellular pathogens, including Legionella pneumophila. Legionella causes the severe pneumonia Legionnaires' disease and predominantly affects individuals with a suppressed immune system, including those receiving therapeutic TNF blockade to treat autoinflammatory disorders. TNF induces pro-inflammatory gene expression, cellular proliferation, and survival signals in certain contexts, but can also trigger programmed cell death in others. It remains unclear, however, which of the pleiotropic functions of TNF mediate control of intracellular bacterial pathogens like Legionella. In this study, we demonstrate that TNF signaling licenses macrophages to die rapidly in response to Legionella infection. We find that TNF-licensed cells undergo rapid gasdermin-dependent, pyroptotic death downstream of inflammasome activation. We also find that TNF signaling upregulates components of the inflammasome response, and that the caspase-11-mediated non-canonical inflammasome is the first inflammasome to be activated, with caspase-1 and caspase-8 mediating delayed pyroptotic death. We find that all three caspases are collectively required for optimal TNF-mediated restriction of bacterial replication in macrophages. Furthermore, caspase-8 is required for control of pulmonary Legionella infection. These findings reveal a TNF-dependent mechanism in macrophages for activating rapid cell death that is collectively mediated by caspases-1, -8, and -11 and subsequent restriction of Legionella infection.


Asunto(s)
Enfermedad de los Legionarios , Neumonía , Ratones , Animales , Humanos , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Inflamasomas , Ratones Noqueados , Macrófagos , Caspasas/metabolismo , Muerte Celular , Factor de Necrosis Tumoral alfa/metabolismo , Neumonía/metabolismo , Concesión de Licencias
3.
Cryst Growth Des ; 19(7): 4101-4108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32863778

RESUMEN

Solubility measurements for polymorphic compounds are often accompanied by solvent-mediated phase transformations. In this study, solubility measurements from undersaturated solutions are employed to investigate the solubility of the two most stable polymorphs of flufenamic acid (FFA forms I and III), tolfenamic acid (TA forms I and II), and the only known form of niflumic acid (NA). The solubility was measured from 278.15 to 333.15 K in four alcohols of a homologous series (methanol, ethanol, 1-propanol, n-butanol) using the polythermal method. It was established that the solubility of these compounds increases with increasing temperature. The solubility curves of FFA forms I and III intersect at ~315.15 K (42 °C) in all four solvents, which represents the transition temperature of the enantiotropic pair. In the case of TA, the solubility of form II could not be reliably obtained in any of the solvents because of the fast solvent-mediated phase transformation. The solubility of the only known form of NA was also determined, and no other polymorphs of NA were observed. The experimental solubility data of FFA (forms I and III), TA (form I), and NA in these four solvents was correlated using the modified Apelblat and λh model equations. The correlated and experimentally determined solubility data obtained serves to (i) guide the accurate determination of the solubility for polymorphic compounds, (ii) assess the role of the solvent in mediating transformations, and (iii) provide a route to engineer advanced crystallization processes for these pharmaceutical compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA