Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Ecotoxicol Environ Saf ; 276: 116261, 2024 May.
Article En | MEDLINE | ID: mdl-38574644

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48 h to 10 µM SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5 µM), fluopyram (EC50=4.8 µM) and flutolanil (EC50=53.6 µM). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.


Cytochrome P-450 CYP3A , Hepatocytes , Succinate Dehydrogenase , Humans , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Hepatocytes/drug effects , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Fungicides, Industrial/toxicity , RNA, Messenger/metabolism , RNA, Messenger/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/toxicity , Cell Line
2.
Toxicology ; 363-364: 58-71, 2016 07 01.
Article En | MEDLINE | ID: mdl-27450509

Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking.


Liver/drug effects , Smoking/adverse effects , ATP-Binding Cassette Transporters/drug effects , ATP-Binding Cassette Transporters/metabolism , Cell Line, Tumor , Drug Interactions , Humans , Liver/cytology , Liver/metabolism , RNA Interference/drug effects , Solute Carrier Proteins/drug effects , Solute Carrier Proteins/metabolism
3.
FEBS Lett ; 579(9): 1904-10, 2005 Mar 28.
Article En | MEDLINE | ID: mdl-15792794

Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are toxic environmental contaminants known to enhance production of pro-inflammatory cytokines such as IL-1beta. The present study was designed in order to determine whether TNFalpha, another cytokine acting in inflammation, may also constitute a target for these chemicals. Both TNFalpha mRNA and TNFalpha secretion levels were found to be enhanced in human BP-treated macrophages. Dioxin, a contaminant activating the aryl hydrocarbon receptor (AhR) like PAHs, was also shown to increase TNFalpha expression. BP-mediated TNFalpha induction was however not suppressed by AhR antagonists, making unlikely the involvement of the typical AhR signalling pathway. BP-exposure of macrophages did not enhance NF-kappaB DNA binding activity, but it activated the MAP kinase ERK1/2. In addition, the use of chemical inhibitors of extracellular signal-regulated protein kinase (ERK) activation fully abrogated induction of TNFalpha production in BP-treated macrophages. These data likely indicate that PAHs enhance TNFalpha expression in human macrophages through an ERK-related mechanism. Such a regulation may contribute to confer pro-inflammatory properties to these widely-distributed environmental contaminants.


Benzo(a)pyrene/pharmacology , Environmental Pollutants/pharmacology , Extracellular Signal-Regulated MAP Kinases/physiology , Macrophages/drug effects , Tumor Necrosis Factor-alpha/metabolism , Butadienes/pharmacology , Cells, Cultured , DNA-Binding Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Flavonoids/pharmacology , Gene Expression/drug effects , Humans , Macrophages/enzymology , Macrophages/immunology , NF-kappa B/metabolism , Nitriles/pharmacology , Polychlorinated Dibenzodioxins/pharmacology , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/analysis , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Up-Regulation
...