Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867022

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Dieta Occidental/efectos adversos , Estudios Retrospectivos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/etiología
2.
Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38906141

RESUMEN

BACKGROUND: Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS: We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS: We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION: This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING: This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.

3.
Cells ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607025

RESUMEN

Achieving successful hematopoietic stem cell transplantation (HSCT) relies on two fundamental pillars: effective mobilization and efficient collection through apheresis to attain the optimal graft dose. These cornerstones pave the way for enhanced patient outcomes. The primary challenges encountered by the clinical unit and collection facility within a transplant program encompass augmenting mobilization efficiency to optimize the harvest of target cell populations, implementing robust monitoring and predictive strategies for mobilization, streamlining the apheresis procedure to minimize collection duration while ensuring adequate yield, prioritizing patient comfort by reducing the overall collection time, guaranteeing the quality and purity of stem cell products to optimize graft function and transplant success, and facilitating seamless coordination between diverse entities involved in the HSCT process. In this review, we aim to address key questions and provide insights into the critical aspects of mobilizing and collecting hematopoietic stem cells for transplantation purposes.


Asunto(s)
Eliminación de Componentes Sanguíneos , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Movilización de Célula Madre Hematopoyética/métodos , Trasplante Homólogo , Eliminación de Componentes Sanguíneos/métodos , Células Madre Hematopoyéticas
5.
J Clin Med ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337476

RESUMEN

BACKGROUND: With promising outcomes, platelet-rich plasma (PRP) has recently been suggested as a treatment for olfactory dysfunction (OD). METHODS: Clinical studies utilizing PRP in OD caused by COVID-19, trauma, anesthetic exposure, viral infection, and chronic rhinosinusitis were included in a systematic review. RESULTS: Ten clinical studies were qualitatively analyzed. Six of these studies used the PRP for OD caused by COVID-19, one on OD after functional endoscopic sinus surgery, and three on post-infectious or post-trauma OD. The population included 531 patients, ranging in age from 15 to 63. CONCLUSION: The use of PRP may be a risk-free and efficient therapeutic option with very encouraging outcomes. Indeed, it enhances olfactory perception in patients who not only exhibit COVID-19 infection aftereffects, but also in those who have lost their sense of smell due to trauma, rhinosinusitis, rhinitis, or even surgery. To evaluate the PRP's therapeutic benefits in OD patients and to compare the efficacy of different therapeutic protocols with regard to treatment schedules, there is an urgent need for focused controlled trials.

6.
J Hepatol ; 80(6): 941-956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38365182

RESUMEN

BACKGROUND & AIMS: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.


Asunto(s)
Matriz Extracelular , Células Estrelladas Hepáticas , Lipasa , Cirrosis Hepática , Proteínas de la Membrana , Factor de Crecimiento Transformador beta1 , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Lipasa/genética , Lipasa/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Células Cultivadas , Hígado/patología , Hígado/metabolismo , Transducción de Señal/genética , Obesidad/genética , Obesidad/metabolismo , Masculino , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
8.
Mol Metab ; 73: 101728, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084865

RESUMEN

BACKGROUND AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL "lipid signatures" in NAFLD; whole plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers. METHODS: We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven NAFLD patients and 20 sex and age-matched controls. RESULTS: In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases. CONCLUSION: NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL) phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus contributing to NAFLD pathophysiology.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos no Esterificados , Lipoproteínas HDL , Ácidos Grasos Insaturados , Fosfolípidos
10.
Chemotherapy ; 68(3): 138-142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893739

RESUMEN

INTRODUCTION: Neoangiogenesis has a crucial role in multiple myeloma (MM), and circulating endothelial cells (CECs) contribute to neovascularization by inducing tumor progression and metastasis and by repairing damage to bone marrow vasculature after stem cell transplantation (HSC). We recently proved in a national multicenter study the possibility to reach a high-level standardization in CEC count and analysis based on a polychromatic flow cytometry Lyotube (BD). Our study aimed at assessing the kinetics of CECs in patients with MM undergoing autologous hematopoietic stem cell transplantation (Au-HSCT). METHODS: Blood samples for analysis were collected at different time points before (T0, T1) and after (T2, T3, T4) Au-HSCT. For each sample, 20 × 106 leukocytes were processed as already described (Lanuti 2016 e 2018) through a multistep procedure. CECs were eventually identified as 7-ADDneg/Syto16pos/CD45neg/CD34pos/CD146pos. RESULTS: Twenty-six MM patients were enrolled in the study. Overall, we observed a constant increase of CECs values from T0 to T3 (day of neutrophil engraftment) followed by decrease at T4 (100 days after transplantation). Using the median value of CECs at T3, we could define a cut-off concentration of 618/mL, with patients with more infective complications having CECs above that value (9/13 vs. 2/13; p = 0.005). CONCLUSION: CECs value may be a function of endothelial damage caused by conditioning regimen, as suggested by the increase of their level during the engraftment period. A more severe endothelial damage is reflected by the increase of infective complications in patients with higher CECs value at T3.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Células Endoteliales/patología , Cinética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Citometría de Flujo/métodos , Trasplante Autólogo
12.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743227

RESUMEN

The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipidómica , Lipoproteínas , Síndrome Metabólico/complicaciones , Síndrome Metabólico/diagnóstico , Obesidad/complicaciones , Obesidad Abdominal/complicaciones , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfatidilcolinas
13.
Nat Commun ; 13(1): 1748, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365625

RESUMEN

The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing lipid cell non-autonomous signal(s). Lipidomics identifies that palmitate-induced cell stress induces long-chain ceramide 40:1 and 42:1 secretion. Ceramide synthesis through the ceramide synthase 2 de novo pathway is regulated by UPR kinase Perk. Inactivation of CerS2 in mice reduces systemic and muscle ceramide signals and muscle UPR activation. The ceramides are packaged into extracellular vesicles, secreted and induce UPR activation in naïve myotubes through dihydroceramide accumulation. This study furthers our understanding of ER stress by identifying UPR-inducing cell non-autonomous signals.


Asunto(s)
Ceramidas , Estrés del Retículo Endoplásmico , Animales , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Ratones , Músculo Esquelético/metabolismo , Respuesta de Proteína Desplegada
14.
Clin Epigenetics ; 14(1): 39, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279219

RESUMEN

BACKGROUND: This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and its relationship with thrombosis by generating a multi-omic disease signature. METHODS/RESULTS: We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups (morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisation of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individuals, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms emerge amongst the pathways that show an improvement after surgical intervention. CONCLUSIONS: We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the normal population, those individuals with a higher likelihood of presenting with the disease, even when not displaying the classic features.


Asunto(s)
Lipodistrofia , Síndrome Metabólico , Obesidad Mórbida , Metilación de ADN , Epigénesis Genética , Humanos , Síndrome Metabólico/genética , Obesidad Mórbida/cirugía , Fenotipo
15.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35205709

RESUMEN

An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.

16.
J Hepatol ; 77(1): 219-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157957

RESUMEN

HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Neoplasias Hepáticas , Antivirales/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Progresión de la Enfermedad , Hepacivirus , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/patología , Humanos , Neoplasias Hepáticas/patología , Obesidad/tratamiento farmacológico , Respuesta Virológica Sostenida
17.
Nat Commun ; 13(1): 334, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039505

RESUMEN

RNF43/ZNRF3 negatively regulate WNT signalling. Both genes are mutated in several types of cancers, however, their contribution to liver disease is unknown. Here we describe that hepatocyte-specific loss of Rnf43/Znrf3 results in steatohepatitis and in increase in unsaturated lipids, in the absence of dietary fat supplementation. Upon injury, Rnf43/Znrf3 deletion results in defective hepatocyte regeneration and liver cancer, caused by an imbalance between differentiation/proliferation. Using hepatocyte-, hepatoblast- and ductal cell-derived organoids we demonstrate that the differentiation defects and lipid alterations are, in part, cell-autonomous. Interestingly, ZNRF3 mutant liver cancer patients present poorer prognosis, altered hepatic lipid metabolism and steatohepatitis/NASH signatures. Our results imply that RNF43/ZNRF3 predispose to liver cancer by controlling the proliferative/differentiation and lipid metabolic state of hepatocytes. Both mechanisms combined facilitate the progression towards malignancy. Our findings might aid on the management of those RNF43/ZNRF3 mutated individuals at risk of developing fatty liver and/or liver cancer.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Regeneración Hepática , Hígado/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Animales , Carcinoma Hepatocelular/patología , Diferenciación Celular , Proliferación Celular , Hígado Graso/patología , Eliminación de Gen , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatomegalia/patología , Humanos , Hiperplasia , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Lipidómica , Hígado/patología , Neoplasias Hepáticas/patología , Ratones , Pronóstico
18.
Hepatology ; 75(5): 1347-1348, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080268
19.
J Hepatol ; 76(5): 1001-1012, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34942286

RESUMEN

BACKGROUND & AIMS: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. METHODS: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1-/- and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. RESULTS: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a pro-inflammatory phenotype and the release of cytokines such as TNF-ɑ. Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. CONCLUSIONS: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Anticuerpos Monoclonales , Dieta Alta en Grasa/efectos adversos , Estudio de Asociación del Genoma Completo , Humanos , Inflamación/metabolismo , Lípidos , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo
20.
Sci Transl Med ; 13(624): eabk2267, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910547

RESUMEN

The prevalence of nonalcoholic steatohepatitis (NASH) and liver cancer is increasing. De novo lipogenesis and fibrosis contribute to disease progression and cancerous transformation. Here, we found that ß2-spectrin (SPTBN1) promotes sterol regulatory element (SRE)­binding protein (SREBP)­stimulated lipogenesis and development of liver cancer in mice fed a high-fat diet (HFD) or a western diet (WD). Either hepatocyte-specific knockout of SPTBN1 or siRNA-mediated therapy protected mice from HFD/WD-induced obesity and fibrosis, lipid accumulation, and tissue damage in the liver. Biochemical analysis suggested that HFD/WD induces SPTBN1 and SREBP1 cleavage by CASPASE-3 and that the cleaved products interact to promote expression of genes with sterol response elements. Analysis of human NASH tissue revealed increased SPTBN1 and CASPASE-3 expression. Thus, our data indicate that SPTBN1 represents a potential target for therapeutic intervention in NASH and liver cancer.


Asunto(s)
Neoplasias , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Espectrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...