Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 216(9): 2979-2989, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28716844

RESUMEN

Microglia control excitatory synapses, but their role in inhibitory neurotransmission has been less well characterized. Herein, we show that microglia control the strength of glycinergic but not GABAergic synapses via modulation of the diffusion dynamics and synaptic trapping of glycine (GlyR) but not GABAA receptors. We further demonstrate that microglia regulate the activity-dependent plasticity of glycinergic synapses by tuning the GlyR diffusion trap. This microglia-synapse cross talk requires production of prostaglandin E2 by microglia, leading to the activation of neuronal EP2 receptors and cyclic adenosine monophosphate-dependent protein kinase. Thus, we now provide a link between microglial activation and synaptic dysfunctions, which are common early features of many brain diseases.


Asunto(s)
Dinoprostona/metabolismo , Sinapsis Eléctricas/metabolismo , Glicina/metabolismo , Microglía/metabolismo , Inhibición Neural , Médula Espinal/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Difusión , Femenino , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Transporte de Proteínas , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Membranas Sinápticas/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos
2.
Elife ; 52016 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-27008179

RESUMEN

Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1(+) and Rab7(+) vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1(+)perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Fosfatos de Fosfatidilinositol/biosíntesis , Animales , Eliminación de Gen , Ratones
3.
Hum Mol Genet ; 24(2): 383-96, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25187576

RESUMEN

Mutations of FIG4 are responsible for Yunis-Varón syndrome, familial epilepsy with polymicrogyria, and Charcot-Marie-Tooth type 4J neuropathy (CMT4J). Although loss of the FIG4 phospholipid phosphatase consistently causes decreased PtdIns(3,5)P2 levels, cell-specific sensitivity to partial loss of FIG4 function may differentiate FIG4-associated disorders. CMT4J is an autosomal recessive neuropathy characterized by severe demyelination and axonal loss in human, with both motor and sensory involvement. However, it is unclear whether FIG4 has cell autonomous roles in both motor neurons and Schwann cells, and how loss of FIG4/PtdIns(3,5)P2-mediated functions contribute to the pathogenesis of CMT4J. Here, we report that mice with conditional inactivation of Fig4 in motor neurons display neuronal and axonal degeneration. In contrast, conditional inactivation of Fig4 in Schwann cells causes demyelination and defects in autophagy-mediated degradation. Moreover, Fig4-regulated endolysosomal trafficking in Schwann cells is essential for myelin biogenesis during development and for proper regeneration/remyelination after injury. Our data suggest that impaired endolysosomal trafficking in both motor neurons and Schwann cells contributes to CMT4J neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Flavoproteínas/metabolismo , Neuronas Motoras/metabolismo , Células de Schwann/metabolismo , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Endosomas/metabolismo , Flavoproteínas/genética , Silenciador del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoinosítido Fosfatasas , Transporte de Proteínas
4.
J Neurosci ; 33(38): 15295-305, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048858

RESUMEN

Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination.


Asunto(s)
Regulación de la Expresión Génica/genética , Vaina de Mielina/metabolismo , Células de Schwann/fisiología , Factores de Transcripción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Células Cultivadas , Técnicas de Cocultivo , Homólogo 1 de la Proteína Discs Large , Embrión de Mamíferos , Ganglios Espinales/citología , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas de Neurofilamentos/metabolismo , Neuronas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Asociadas a SAP90-PSD95 , Células de Schwann/ultraestructura , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Factores de Transcripción/deficiencia , Transducción Genética
5.
Trends Mol Med ; 18(6): 317-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22578719

RESUMEN

The myotubularin family of phosphoinositide phosphatases includes several members mutated in neuromuscular diseases or associated with metabolic syndrome, obesity, and cancer. Catalytically dead phosphatases regulate their active homologs by heterodimerization and potentially represent key players in the phosphatase-kinase balance. Although the enzymatic specificity for phosphoinositides indicates a role for myotubularins in endocytosis and membrane trafficking, recent findings in cellular and animal models suggest that myotubularins regulate additional processes including cell proliferation and differentiation, autophagy, cytokinesis, and cytoskeletal and cell junction dynamics. In this review, we discuss how myotubularins regulate such diverse processes, emphasizing newly identified functions in a physiological and pathological context. A better understanding of myotubularin pathophysiology will pave the way towards therapeutic strategies.


Asunto(s)
Enfermedades Neuromusculares/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Autofagia/fisiología , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Endocitosis/fisiología , Humanos , Canales Iónicos/metabolismo , Enfermedades Neuromusculares/genética , Fagocitosis/fisiología , Multimerización de Proteína , Transporte de Proteínas , Proteínas Tirosina Fosfatasas no Receptoras/genética , Transducción de Señal
6.
Development ; 139(7): 1359-67, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22357929

RESUMEN

Myelination is a complex process that requires coordinated Schwann cell-axon interactions during development and regeneration. Positive and negative regulators of myelination have been recently described, and can belong either to Schwann cells or neurons. Vimentin is a fibrous component present in both Schwann cell and neuron cytoskeleton, the expression of which is timely and spatially regulated during development and regeneration. We now report that vimentin negatively regulates myelination, as loss of vimentin results in peripheral nerve hypermyelination, owing to increased myelin thickness in vivo, in transgenic mice and in vitro in a myelinating co-culture system. We also show that this is due to a neuron-autonomous increase in the levels of axonal neuregulin 1 (NRG1) type III. Accordingly, genetic reduction of NRG1 type III in vimentin-null mice rescues hypermyelination. Finally, we demonstrate that vimentin acts synergistically with TACE, a negative regulator of NRG1 type III activity, as shown by hypermyelination of double Vim/Tace heterozygous mice. Our results reveal a novel role for the intermediate filament vimentin in myelination, and indicate vimentin as a regulator of NRG1 type III function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Vimentina/fisiología , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animales , Axones/metabolismo , Técnicas de Cocultivo , Citoesqueleto/metabolismo , Heterocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Neurregulina-1/metabolismo , Ratas , Células de Schwann/citología
7.
PLoS Genet ; 7(10): e1002319, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028665

RESUMEN

We previously reported that autosomal recessive demyelinating Charcot-Marie-Tooth (CMT) type 4B1 neuropathy with myelin outfoldings is caused by loss of MTMR2 (Myotubularin-related 2) in humans, and we created a faithful mouse model of the disease. MTMR2 dephosphorylates both PtdIns3P and PtdIns(3,5)P(2), thereby regulating membrane trafficking. However, the function of MTMR2 and the role of the MTMR2 phospholipid phosphatase activity in vivo in the nerve still remain to be assessed. Mutations in FIG4 are associated with CMT4J neuropathy characterized by both axonal and myelin damage in peripheral nerve. Loss of Fig4 function in the plt (pale tremor) mouse produces spongiform degeneration of the brain and peripheral neuropathy. Since FIG4 has a role in generation of PtdIns(3,5)P(2) and MTMR2 catalyzes its dephosphorylation, these two phosphatases might be expected to have opposite effects in the control of PtdIns(3,5)P(2) homeostasis and their mutations might have compensatory effects in vivo. To explore the role of the MTMR2 phospholipid phosphatase activity in vivo, we generated and characterized the Mtmr2/Fig4 double null mutant mice. Here we provide strong evidence that Mtmr2 and Fig4 functionally interact in both Schwann cells and neurons, and we reveal for the first time a role of Mtmr2 in neurons in vivo. Our results also suggest that imbalance of PtdIns(3,5)P(2) is at the basis of altered longitudinal myelin growth and of myelin outfolding formation. Reduction of Fig4 by null heterozygosity and downregulation of PIKfyve both rescue Mtmr2-null myelin outfoldings in vivo and in vitro.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Células de Schwann/enzimología , Aminopiridinas/farmacología , Animales , Axones/enzimología , Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/metabolismo , Flavoproteínas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Nervios Periféricos/enzimología , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas , Fosfolípidos/genética , Fosfolípidos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ratas , Células de Schwann/metabolismo
8.
J Agric Food Chem ; 57(7): 2668-77, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19265380

RESUMEN

We have developed an effective strategy based on real-time PCR assay for the molecular characterization of genetically modified grape and to quantify the efficiency of a marker gene removal. This research has been implemented in Vitis vinifera cv. Brachetto plantlets where exogenes were inserted during cocultures of embryogenic calli with Agrobacterium tumefaciens carrying the chemically inducible site-specific cre/loxP pX6 vector where the expression of the cre recombinase is regulated by 17-beta-estradiol. The neomycin phosphotransferase gene (nptII) for the kanamycin resistance trait was inserted as part of the gene transfer protocol, and this exogene was employed as a case study for carrying out our research. The 9-cis-epoxycarotenoid dioxygenase (nced2) and chalcone isomerase (chi) genes coding for two enzymes, involved respectively in abscisic acid and flavonoid biosynthesis, proved to be valuable reference endogenes for real-time PCR assays. Two types of duplo-target plasmids were exploited for building the standard curves: in one type (p-nptII/nced2) the nptII sequence is linked to the nced2 sequence; in the other (p-nptII/chi) it is linked to the chi. These calibrators were intended to simulate an ideal genetically modified plant carrying a homozygous single-copy exogene insertion. The repeatability test confirmed the suitability of both plasmid calibrators. Foreign gene stability can be monitored during long-term plant preservation, and the method proved to be suitable for quantifying the efficiency of nptII gene removal induced by 17-beta-estradiol.


Asunto(s)
Marcadores Genéticos/genética , Kanamicina Quinasa/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos , Vitis/genética , Southern Blotting , ADN de Plantas/análisis , Dioxigenasas , Estradiol/farmacología , Expresión Génica/efectos de los fármacos , Técnicas de Transferencia de Gen , Oxigenasas/genética , Proteínas de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...