Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 14(1): 86, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336862

RESUMEN

Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.


Asunto(s)
Agonistas de Dopamina , Conducta Impulsiva , Ratas , Masculino , Animales , Pramipexol/farmacología , Conducta Impulsiva/fisiología , Agonistas de Dopamina/farmacología , Dopamina/metabolismo , ARN Mensajero
2.
Biol Psychiatry ; 93(6): 512-523, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36494220

RESUMEN

BACKGROUND: Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS: Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS: We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS: These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.


Asunto(s)
Motivación , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Ratones Obesos , Neuronas/fisiología , Obesidad , Receptores de Dopamina D1/metabolismo , Ratones Endogámicos C57BL
3.
Addict Biol ; 28(1): e13253, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577735

RESUMEN

Use of prescription opioids, particularly oxycodone, is an initiating factor driving the current opioid epidemic. There are several challenges with modelling oxycodone abuse. First, prescription opioids including oxycodone are orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl, which have been more commonly used in rodent research. This oral route of administration determines the pharmacokinetic profile, which then influences the establishment of drug-reinforcement associations in animals. Moreover, the pattern of intake and the environment in which addictive drugs are self-administered are critical determinants of the levels of drug intake, of behavioural sensitization and of propensity to relapse behaviour. These are all important considerations when modelling prescription opioid use, which is characterized by continuous drug access in familiar environments. Thus, to model features of prescription opioid use and the transition to abuse, we designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as sweeteners, and the majority exhibit preference for oxycodone, escalation of intake, physical signs of dependence and reinstatement of seeking after withdrawal. In addition, a subset of animals demonstrate drug taking that is resistant to aversive consequences. This model is therefore translationally relevant and useful for studying the neurobiological substrates of prescription opioid abuse.


Asunto(s)
Trastornos Relacionados con Opioides , Oxicodona , Masculino , Ratones , Femenino , Animales , Analgésicos Opioides/uso terapéutico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Fentanilo , Refuerzo en Psicología
4.
Nat Neurosci ; 24(11): 1601-1613, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663957

RESUMEN

The persistence of negative affect in pain leads to co-morbid symptoms such as anhedonia and depression-major health issues in the United States. The neuronal circuitry and contribution of specific cellular populations underlying these behavioral adaptations remains unknown. A common characteristic of negative affect is a decrease in motivation to initiate and complete goal-directed behavior, known as anhedonia. We report that in rodents, inflammatory pain decreased the activity of ventral tegmental area (VTA) dopamine (DA) neurons, which are critical mediators of motivational states. Pain increased rostromedial tegmental nucleus inhibitory tone onto VTA DA neurons, making them less excitable. Furthermore, the decreased activity of DA neurons was associated with reduced motivation for natural rewards, consistent with anhedonia-like behavior. Selective activation of VTA DA neurons was sufficient to restore baseline motivation and hedonic responses to natural rewards. These findings reveal pain-induced adaptations within VTA DA neurons that underlie anhedonia-like behavior.


Asunto(s)
Adaptación Fisiológica/fisiología , Anhedonia/fisiología , Neuronas Dopaminérgicas/metabolismo , Dolor/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Condicionamiento Operante/fisiología , Neuronas Dopaminérgicas/química , Femenino , Masculino , Optogenética/métodos , Dolor/genética , Ratas , Ratas Long-Evans , Ratas Transgénicas , Área Tegmental Ventral/química
5.
Nat Neurosci ; 24(3): 379-390, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495635

RESUMEN

The nucleus accumbens shell (NAcSh) and the ventral pallidum (VP) are critical for reward processing, although the question of how coordinated activity within these nuclei orchestrates reward valuation and consumption remains unclear. Inhibition of NAcSh firing is necessary for reward consumption, but the source of this inhibition remains unknown. Here, we report that a subpopulation of VP neurons, the ventral arkypallidal (vArky) neurons, project back to the NAcSh, where they inhibit NAcSh neurons in vivo in mice. Consistent with this pathway driving reward consumption via inhibition of the NAcSh, calcium activity of vArky neurons scaled with reward palatability (which was dissociable from reward seeking) and predicted the subsequent drinking behavior during a free-access paradigm. Activation of the VP-NAcSh pathway increased ongoing reward consumption while amplifying hedonic reactions to reward. These results establish a pivotal role for vArky neurons in the promotion of reward consumption through modulation of NAcSh firing in a value-dependent manner.


Asunto(s)
Potenciales de Acción/fisiología , Prosencéfalo Basal/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Recompensa , Animales , Calcio/metabolismo , Conducta de Ingestión de Líquido/fisiología , Femenino , Masculino , Ratones , Vías Nerviosas/fisiología , Núcleo Accumbens/fisiología , Gusto/fisiología
6.
Front Hum Neurosci ; 14: 578564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328933

RESUMEN

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for the motor symptoms of movement disorders including Parkinson's Disease (PD). Despite its therapeutic benefits, STN-DBS has been associated with adverse effects on mood and cognition. Specifically, apathy, which is defined as a loss of motivation, has been reported to emerge or to worsen following STN-DBS. However, it is often challenging to disentangle the effects of STN-DBS per se from concurrent reduction of dopamine replacement therapy, from underlying PD pathology or from disease progression. To this end, pre-clinical models allow for the dissociation of each of these factors, and to establish neural substrates underlying the emergence of motivational symptoms following STN-DBS. Here, we performed a systematic analysis of rodent studies assessing the effects of STN-DBS on reward seeking, reward motivation and reward consumption across a variety of behavioral paradigms. We find that STN-DBS decreases reward seeking in the majority of experiments, and we outline how design of the behavioral task and DBS parameters can influence experimental outcomes. While an early hypothesis posited that DBS acts as a "functional lesion," an analysis of lesions and inhibition of the STN revealed no consistent pattern on reward-related behavior. Thus, we discuss alternative mechanisms that could contribute to the amotivational effects of STN-DBS. We also argue that optogenetic-assisted circuit dissection could yield important insight into the effects of the STN on motivated behavior in health and disease. Understanding the mechanisms underlying the effects of STN-DBS on motivated behavior-will be critical for optimizing the clinical application of STN-DBS.

8.
Mov Disord ; 35(4): 616-628, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31930749

RESUMEN

BACKGROUND: Apathy is one of the most disabling neuropsychiatric symptoms in Parkinson's disease (PD) patients and has a higher prevalence in patients under subthalamic nucleus deep brain stimulation. Indeed, despite its effectiveness for alleviating PD motor symptoms, its neuropsychiatric repercussions have not yet been fully uncovered. Because it can be alleviated by dopaminergic therapies, especially D2 and D3 dopaminergic receptor agonists, the commonest explanation proposed for apathy after subthalamic nucleus deep brain stimulation is a too-strong reduction in dopaminergic treatments. The objective of this study was to determine whether subthalamic nucleus deep brain stimulation can induce apathetic behaviors, which remains an important matter of concern. We aimed to unambiguously address this question of the motivational effects of chronic subthalamic nucleus deep brain stimulation. METHODS: We longitudinally assessed the motivational effects of chronic subthalamic nucleus deep brain stimulation by using innovative wireless microstimulators, allowing continuous stimulation of the subthalamic nucleus in freely moving rats and a pharmacological therapeutic approach. RESULTS: We showed for the first time that subthalamic nucleus deep brain stimulation induces a motivational deficit in naive rats and intensifies those existing in a rodent model of PD neuropsychiatric symptoms. As reported from clinical studies, this loss of motivation was fully reversed by chronic treatment with pramipexole, a D2 and D3 dopaminergic receptor agonist. CONCLUSIONS: Taken together, these data provide experimental evidence that chronic subthalamic nucleus deep brain stimulation by itself can induce loss of motivation, reminiscent of apathy, independently of the dopaminergic neurodegenerative process or reduction in dopamine replacement therapy, presumably reflecting a dopaminergic-driven deficit. Therefore, our data help to clarify and reconcile conflicting clinical observations by highlighting some of the mechanisms of the neuropsychiatric side effects induced by chronic subthalamic nucleus deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Apatía , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Agonistas de Dopamina/farmacología , Humanos , Enfermedad de Parkinson/terapia , Ratas
9.
Front Behav Neurosci ; 12: 312, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618665

RESUMEN

Impulse control disorders (ICDs) are frequent behavioral complications of dopaminergic (DA) replacement therapies (DRTs) in Parkinson's disease (PD). Impulsive choice, which refers to an inability to tolerate delays to reinforcement, has been identified as a core pathophysiological process of ICDs. Although impulsive choices are exacerbated in PD patients with ICDs under DRTs, some clinical and preclinical studies suggest that the DA denervation of the dorsal striatum induced by the neurodegenerative process as well as a pre-existing high impulsivity trait, may both contribute to the emergence of ICDs in PD. We therefore investigated in a preclinical model in rats, specifically designed to study PD-related non-motor symptoms, the effect of nigrostriatal DA denervation on impulsive choice, in relation to pre-existing levels of impulsivity, measured in a Delay Discounting Task (DDT). In this procedure, rats had the choice between responding for a small sucrose reinforcer delivered immediately, or a larger sucrose reinforcer, delivered after a 0, 5, 10 or 15 s delay. In two different versions of the task, the preference for the large reinforcer decreased as the delay increased. However, and in contrast to our initial hypothesis, this discounting effect was neither exacerbated by, or related to, the extent of the substantia nigra pars compacta (SNc) DA lesion, nor it was influenced by pre-existing variability in impulsive choice. These results therefore question the potential implication of the nigrostriatal DA system in impulsive choice, as well as the DA neurodegenerative process as a factor contributing significantly to the development of ICDs in PD.

10.
Sci Rep ; 7: 41589, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134302

RESUMEN

Beyond classical motor symptoms, motivational and affective deficits are frequently observed in Parkinson's disease (PD), dramatically impairing the quality of life of patients. Using bilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats, we have been able to reproduce these neuropsychiatric/non-motor impairments. The present study describes how bilateral 6-OHDA SNc lesions affect the function of the main striatal dopaminergic (DA) receptor subtypes. Autoradiography was used to measure the levels of striatal DA receptors, and operant sucrose self-administration and neuropharmacological approaches were combined to investigate the causal implication of specific DA receptors subtypes in the motivational deficits induced by a dorsostriatal DA denervation. We found that D3 receptors (D3R) exclusively are down-regulated within the dorsal striatum of lesioned rats. We next showed that infusion of a D3R antagonist (SB-277011A) in non-lesioned animals specifically disrupts preparatory, but not consummatory behaviors. Our findings reveal an unexpected involvement of dorsostriatal D3R in motivational processes. They strongly suggest an implication of dorsostriatal D3R in the neuropsychiatric symptoms observed in PD, highlighting this receptor as a potential target for pharmacological treatment.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Receptores de Dopamina D3/metabolismo , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Expresión Génica , Inmunohistoquímica , Masculino , Oxidopamina/efectos adversos , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Ratas , Receptores de Dopamina D3/antagonistas & inhibidores , Receptores de Dopamina D3/genética , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sacarosa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
11.
Mov Disord ; 30(13): 1739-49, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25588931

RESUMEN

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment for the motor symptoms of Parkinson's disease (PD), but its mechanisms, particularly as concern dopaminergic transmission, remain unclear. The aim of this study was to evaluate changes in the expression of dopaminergic receptors (D1, D2, and D3 receptors) after prolonged (4 h) unilateral STN-HFS in anesthetized intact rats and rats with total dopaminergic denervation. We used [(3)H]SCH 23390, [(125)I]iodosulpride, and [(125)I]OH-PIPAT to assess the densities of D1R, D2R, and D3R, respectively, within different areas of the striatum-a major input structure of the basal ganglia-including the nucleus accumbens. We found that STN-HFS increased D1 R levels in almost all of the striatal areas examined, in both intact and denervated rats. By contrast, STN-HFS led to a large decrease in D2 R and D3R levels, limited to the nucleus accumbens and independent of the dopaminergic state of the animals. These data suggest that the influence of STN-HFS on striatal D1 R expression may contribute to its therapeutic effects on motor symptoms, whereas its impact on D2R/D3 R levels in the nucleus accumbens may account for the neuropsychiatric side effects often observed in stimulated PD patients, such as postoperative apathy.


Asunto(s)
Cuerpo Estriado/metabolismo , Estimulación Encefálica Profunda , Receptores Dopaminérgicos/metabolismo , Núcleo Subtalámico/fisiología , Adrenérgicos/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Lateralidad Funcional/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Oxidopamina/farmacología , Unión Proteica/efectos de los fármacos , Radioisótopos/farmacocinética , Ratas , Receptores Dopaminérgicos/genética , Tirosina 3-Monooxigenasa/metabolismo
12.
PLoS One ; 8(11): e79335, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260200

RESUMEN

Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Adhesión Celular/genética , Línea Celular , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Células HT29 , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Receptores de Hormona Liberadora de Corticotropina/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...