Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 71(4): 1298-1307, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38048239

RESUMEN

Flexible array transducers can adapt to patient-specific geometries during real-time ultrasound (US) image-guided therapy monitoring. This makes the system radiation-free and less user-dependency. Precise estimation of the flexible transducer's geometry is crucial for the delay-and-sum (DAS) beamforming algorithm to reconstruct B-mode US images. The primary innovation of this research is to build a system named FLexible transducer with EXternal tracking (FLEX) to estimate the position of each element of the flexible transducer and reconstruct precise US images. FLEX utilizes customized optical markers and a tracker to monitor the probe's geometry, employing a polygon fitting algorithm to estimate the position and azimuth angle of each transducer element. Subsequently, the traditional DAS algorithm processes the delay estimation from the tracked element position, reconstructing US images from radio-frequency (RF) channel data. The proposed method underwent evaluation on phantoms and cadaveric specimens, demonstrating its clinical feasibility. Deviations in tracked probe geometry compared to ground truth were minimal, measuring 0.50 ± 0.29 mm for the CIRS phantom, 0.54 ± 0.35 mm for the deformable phantom, and 0.36 ± 0.24 mm on the cadaveric specimen. Reconstructing the US image using tracked probe geometry significantly outperformed the untracked geometry, as indicated by a Dice score of 95.1 ± 3.3% versus 62.3 ± 9.2% for the CIRS phantom. The proposed method achieved high accuracy (<0.5 mm error) in tracking the element position for various random curvatures applicable for clinical deployment. The evaluation results show that the radiation-free proposed method can effectively reconstruct US images and assist in monitoring image-guided therapy with minimal user dependency.


Asunto(s)
Algoritmos , Transductores , Humanos , Ultrasonografía , Fantasmas de Imagen , Cadáver
2.
Med Phys ; 50(5): 2607-2624, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36906915

RESUMEN

BACKGROUND: Image-guided neurosurgery requires high localization and registration accuracy to enable effective treatment and avoid complications. However, accurate neuronavigation based on preoperative magnetic resonance (MR) or computed tomography (CT) images is challenged by brain deformation occurring during the surgical intervention. PURPOSE: To facilitate intraoperative visualization of brain tissues and deformable registration with preoperative images, a 3D deep learning (DL) reconstruction framework (termed DL-Recon) was proposed for improved intraoperative cone-beam CT (CBCT) image quality. METHODS: The DL-Recon framework combines physics-based models with deep learning CT synthesis and leverages uncertainty information to promote robustness to unseen features. A 3D generative adversarial network (GAN) with a conditional loss function modulated by aleatoric uncertainty was developed for CBCT-to-CT synthesis. Epistemic uncertainty of the synthesis model was estimated via Monte Carlo (MC) dropout. Using spatially varying weights derived from epistemic uncertainty, the DL-Recon image combines the synthetic CT with an artifact-corrected filtered back-projection (FBP) reconstruction. In regions of high epistemic uncertainty, DL-Recon includes greater contribution from the FBP image. Twenty paired real CT and simulated CBCT images of the head were used for network training and validation, and experiments evaluated the performance of DL-Recon on CBCT images containing simulated and real brain lesions not present in the training data. Performance among learning- and physics-based methods was quantified in terms of structural similarity (SSIM) of the resulting image to diagnostic CT and Dice similarity metric (DSC) in lesion segmentation compared to ground truth. A pilot study was conducted involving seven subjects with CBCT images acquired during neurosurgery to assess the feasibility of DL-Recon in clinical data. RESULTS: CBCT images reconstructed via FBP with physics-based corrections exhibited the usual challenges to soft-tissue contrast resolution due to image non-uniformity, noise, and residual artifacts. GAN synthesis improved image uniformity and soft-tissue visibility but was subject to error in the shape and contrast of simulated lesions that were unseen in training. Incorporation of aleatoric uncertainty in synthesis loss improved estimation of epistemic uncertainty, with variable brain structures and unseen lesions exhibiting higher epistemic uncertainty. The DL-Recon approach mitigated synthesis errors while maintaining improvement in image quality, yielding 15%-22% increase in SSIM (image appearance compared to diagnostic CT) and up to 25% increase in DSC in lesion segmentation compared to FBP. Clear gains in visual image quality were also observed in real brain lesions and in clinical CBCT images. CONCLUSIONS: DL-Recon leveraged uncertainty estimation to combine the strengths of DL and physics-based reconstruction and demonstrated substantial improvements in the accuracy and quality of intraoperative CBCT. The improved soft-tissue contrast resolution could facilitate visualization of brain structures and support deformable registration with preoperative images, further extending the utility of intraoperative CBCT in image-guided neurosurgery.


Asunto(s)
Aprendizaje Profundo , Humanos , Proyectos Piloto , Incertidumbre , Tomografía Computarizada de Haz Cónico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
3.
J Med Imaging (Bellingham) ; 9(4): 045004, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36046335

RESUMEN

Purpose: Internal fixation of pelvic fractures is a challenging task requiring the placement of instrumentation within complex three-dimensional bone corridors, typically guided by fluoroscopy. We report a system for two- and three-dimensional guidance using a drill-mounted video camera and fiducial markers with evaluation in first preclinical studies. Approach: The system uses a camera affixed to a surgical drill and multimodality (optical and radio-opaque) markers for real-time trajectory visualization in fluoroscopy and/or CT. Improvements to a previously reported prototype include hardware components (mount, camera, and fiducials) and software (including a system for detecting marker perturbation) to address practical requirements necessary for translation to clinical studies. Phantom and cadaver experiments were performed to quantify the accuracy of video-fluoroscopy and video-CT registration, the ability to detect marker perturbation, and the conformance in placing guidewires along realistic pelvic trajectories. The performance was evaluated in terms of geometric accuracy and conformance within bone corridors. Results: The studies demonstrated successful guidewire delivery in a cadaver, with a median entry point error of 1.00 mm (1.56 mm IQR) and median angular error of 1.94 deg (1.23 deg IQR). Such accuracy was sufficient to guide K-wire placement through five of the six trajectories investigated with a strong level of conformance within bone corridors. The sixth case demonstrated a cortical breach due to extrema in the registration error. The system was able to detect marker perturbations and alert the user to potential registration issues. Feasible workflows were identified for orthopedic-trauma scenarios involving emergent cases (with no preoperative imaging) or cases with preoperative CT. Conclusions: A prototype system for guidewire placement was developed providing guidance that is potentially compatible with orthopedic-trauma workflow. First preclinical (cadaver) studies demonstrated accurate guidance of K-wire placement in pelvic bone corridors and the ability to automatically detect perturbations that degrade registration accuracy. The preclinical prototype demonstrated performance and utility supporting translation to clinical studies.

4.
IEEE Trans Med Robot Bionics ; 4(1): 28-37, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35368731

RESUMEN

Conventional neuro-navigation can be challenged in targeting deep brain structures via transventricular neuroendoscopy due to unresolved geometric error following soft-tissue deformation. Current robot-assisted endoscopy techniques are fairly limited, primarily serving to planned trajectories and provide a stable scope holder. We report the implementation of a robot-assisted ventriculoscopy (RAV) system for 3D reconstruction, registration, and augmentation of the neuroendoscopic scene with intraoperative imaging, enabling guidance even in the presence of tissue deformation and providing visualization of structures beyond the endoscopic field-of-view. Phantom studies were performed to quantitatively evaluate image sampling requirements, registration accuracy, and computational runtime for two reconstruction methods and a variety of clinically relevant ventriculoscope trajectories. A median target registration error of 1.2 mm was achieved with an update rate of 2.34 frames per second, validating the RAV concept and motivating translation to future clinical studies.

5.
J Med Imaging (Bellingham) ; 8(3): 035001, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34124283

RESUMEN

Purpose: A method for fluoroscopic guidance of a robotic assistant is presented for instrument placement in pelvic trauma surgery. The solution uses fluoroscopic images acquired in standard clinical workflow and helps avoid repeat fluoroscopy commonly performed during implant guidance. Approach: Images acquired from a mobile C-arm are used to perform 3D-2D registration of both the patient (via patient CT) and the robot (via CAD model of a surgical instrument attached to its end effector, e.g; a drill guide), guiding the robot to target trajectories defined in the patient CT. The proposed approach avoids C-arm gantry motion, instead manipulating the robot to acquire disparate views of the instrument. Phantom and cadaver studies were performed to determine operating parameters and assess the accuracy of the proposed approach in aligning a standard drill guide instrument. Results: The proposed approach achieved average drill guide tip placement accuracy of 1.57 ± 0.47 mm and angular alignment of 0.35 ± 0.32 deg in phantom studies. The errors remained within 2 mm and 1 deg in cadaver experiments, comparable to the margins of errors provided by surgical trackers (but operating without the need for external tracking). Conclusions: By operating at a fixed fluoroscopic perspective and eliminating the need for encoded C-arm gantry movement, the proposed approach simplifies and expedites the registration of image-guided robotic assistants and can be used with simple, non-calibrated, non-encoded, and non-isocentric C-arm systems to accurately guide a robotic device in a manner that is compatible with the surgical workflow.

6.
IEEE Trans Autom Sci Eng ; 18(1): 299-310, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33746641

RESUMEN

The treatment of malaria is a global health challenge that stands to benefit from the widespread introduction of a vaccine for the disease. A method has been developed to create a live organism vaccine using the sporozoites (SPZ) of the parasite Plasmodium falciparum (Pf), which are concentrated in the salivary glands of infected mosquitoes. Current manual dissection methods to obtain these PfSPZ are not optimally efficient for large-scale vaccine production. We propose an improved dissection procedure and a mechanical fixture that increases the rate of mosquito dissection and helps to deskill this stage of the production process. We further demonstrate the automation of a key step in this production process, the picking and placing of mosquitoes from a staging apparatus into a dissection assembly. This unit test of a robotic mosquito pick-and-place system is performed using a custom-designed micro-gripper attached to a four degree of freedom (4-DOF) robot under the guidance of a computer vision system. Mosquitoes are autonomously grasped and pulled to a pair of notched dissection blades to remove the head of the mosquito, allowing access to the salivary glands. Placement into these blades is adapted based on output from computer vision to accommodate for the unique anatomy and orientation of each grasped mosquito. In this pilot test of the system on 50 mosquitoes, we demonstrate a 100% grasping accuracy and a 90% accuracy in placing the mosquito with its neck within the blade notches such that the head can be removed. This is a promising result for this difficult and non-standard pick-and-place task. NOTE TO PRACTITIONERS­: Automated processes could help increase malaria vaccine production to global scale. Currently, production requires technicians to manually dissect mosquitoes, a process that is slow, tedious, and requires a lengthy training regimen. This paper presents an an improved manual fixture and procedure that reduces technician training time. Further, an approach to automate this dissection process is proposed and the critical step of robotic manipulation of the mosquito with the aid of computer vision is demonstrated. Our approach may serve as a useful example of system design and integration for practitioners that seek to perform new and challenging pick-and-place tasks with small, non-uniform, and highly deformable objects.

7.
J Med Imaging (Bellingham) ; 8(1): 015002, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33604409

RESUMEN

Purpose: Percutaneous fracture fixation is a challenging procedure that requires accurate interpretation of fluoroscopic images to insert guidewires through narrow bone corridors. We present a guidance system with a video camera mounted onboard the surgical drill to achieve real-time augmentation of the drill trajectory in fluoroscopy and/or CT. Approach: The camera was mounted on the drill and calibrated with respect to the drill axis. Markers identifiable in both video and fluoroscopy are placed about the surgical field and co-registered by feature correspondences. If available, a preoperative CT can also be co-registered by 3D-2D image registration. Real-time guidance is achieved by virtual overlay of the registered drill axis on fluoroscopy or in CT. Performance was evaluated in terms of target registration error (TRE), conformance within clinically relevant pelvic bone corridors, and runtime. Results: Registration of the drill axis to fluoroscopy demonstrated median TRE of 0.9 mm and 2.0 deg when solved with two views (e.g., anteroposterior and lateral) and five markers visible in both video and fluoroscopy-more than sufficient to provide Kirschner wire (K-wire) conformance within common pelvic bone corridors. Registration accuracy was reduced when solved with a single fluoroscopic view ( TRE = 3.4 mm and 2.7 deg) but was also sufficient for K-wire conformance within pelvic bone corridors. Registration was robust with as few as four markers visible within the field of view. Runtime of the initial implementation allowed fluoroscopy overlay and/or 3D CT navigation with freehand manipulation of the drill up to 10 frames / s . Conclusions: A drill-mounted video guidance system was developed to assist with K-wire placement. Overall workflow is compatible with fluoroscopically guided orthopaedic trauma surgery and does not require markers to be placed in preoperative CT. The initial prototype demonstrates accuracy and runtime that could improve the accuracy of K-wire placement, motivating future work for translation to clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...