Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936164

RESUMEN

The article focuses on comparing the friction, abrasion, and crack growth behavior of two different kinds of silica-filled tire tread compounds loaded with (a) in-situ generated alkoxide silica and (b) commercial precipitated silica-filled compounds. The rubber matrix consists of solution styrene butadiene rubber polymers (SSBR). The in-situ generated particles are entirely different in filler morphology, i.e., in terms of size and physical structure, when compared to the precipitated silica. However, both types of the silicas were identified as amorphous in nature. Influence of filler morphology and surface modification of silica on the end performances of the rubbers like dynamic friction, abrasion index, and fatigue crack propagation were investigated. Compared to precipitated silica composites, in-situ derived silica composites offer better abrasion behavior and improved crack propagation with and without admixture of silane coupling agents. Silane modification, particle morphology, and crosslink density were identified as further vital parameters influencing the investigated rubber properties.

2.
Polymers (Basel) ; 12(1)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936848

RESUMEN

We describe an approach for modeling the filler network formation kinetics of particle-reinforced rubbery polymers-commonly called filler flocculation-that was developed by employing parallels between deformation effects in jammed particle systems and the influence of temperature on glass-forming materials. Experimental dynamic viscosity results were obtained concerning the strain-induced particle network breakdown and subsequent time-dependent reformation behavior for uncross-linked elastomers reinforced with carbon black and silica nanoparticles. Using a relaxation time function that depends on both actual dynamic strain amplitude and fictive (structural) strain, the model effectively represented the experimental data for three different levels of dynamic strain down-jump with a single set of parameters. This fictive strain model for filler networking is analogous to the established Tool-Narayanaswamy-Moynihan model for structural relaxation (physical aging) of nonequilibrium glasses. Compared to carbon black, precipitated silica particles without silane surface modification exhibited a greater overall extent of filler networking and showed more self-limiting behavior in terms of network formation kinetics in filled ethylene-propylene-diene rubber (EPDM). The EPDM compounds with silica or carbon black filler were stable during the dynamic shearing and recovery experiments at 160 °C, whereas irreversible dynamic modulus increases were noted when the polymer matrix was styrene-butadiene rubber (SBR), presumably due to branching/cross-linking of SBR in the rheometer. Care must be taken when measuring and interpreting the time-dependent filler networking in unsaturated elastomers at high temperatures.

3.
J Phys Chem B ; 122(6): 2010-2022, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29350918

RESUMEN

A sol-gel transformation of liquid silica precursor to solid silica particles was carried out in a one-pot synthesis way, where a solution of styrene butadiene elastomer was present. The composites, thus produced, offered remarkable improvements of mechanical and dynamic mechanical performances compared to precipitated silica. The morphological analysis reveals that the alkoxy-based silica particles resemble a raspberry structure when the synthesis of the silica was carried out in the presence of polymer molecules and represent a much more open silica-network structure. However, in the absence of the polymer, the morphology of the silica particles is found to be different. It is envisaged that the special morphology of the in situ synthesized silica particles contributes to the superior reinforcement effects, which are associated with a strong silica-rubber interaction by rubber chains trapped inside the raspberry-like silica aggregates. Therefore, the interfaces are characterized in detail by low-field solid-state 1H NMR spectroscopy, 29Si solid-state NMR spectroscopy, and energy-dispersive X-ray spectroscopy. Low-field 1H NMR-based double-quantum experiments provide a quantitative information about the cross-link density of the silica-filled rubber composites and about the influence of silane coupling agent on the chemical cross-link density of the network and correlates well with equilibrium swelling measurements. The special microstructure of the alkoxy-based silica was found to be associated with the interaction between alkoxy-based silica and rubber chains as a consequence of particle growth in the presence of rubber chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...