Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 28(11): 358, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222980

RESUMEN

Zirconia oxide (ZrO2) is a material that has aroused great interest in the scientific community for its general use in various technological applications, such as fuel cells, solar cells, electronic devices, catalysis, dental biomaterial and ceramics. When it is applied as a catalyst, the doping and vacancy effects of their crystalline phases are important properties to guide new developments. This work investigates tetragonal and monoclinic crystalline phases of the Zn-doped ZrO2 by periodic density functional calculations. Changes in the electronic and acid-basic properties were performed by Bader charge analysis, the density of states calculations (DOS) and the projected density of states (PDOS). The formation of oxygen vacancies was also evaluated. The calculated oxygen vacancy formation energies indicate that it is much easier to generate oxygen vacancy in the Zn-doped ZrO2 than in the pure material; in addition, oxygen vacancy formation is favored in the monoclinic phase. Bader charge analyses and projected density of states indicated that the doping of ZrO2 with Zn creates more basic and acid sites. The most stable material is the Zn-doped 3-fold coordinated Zr atom of the m-ZrO2, which can be used for future developments and applications.

2.
J Mol Model ; 27(9): 249, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387739

RESUMEN

The development of bifunctional catalysts is of great interest in fine chemistry, since they are capable of promoting multicatalytic reactions involved in several important industrial processes. Iron oxyhydroxides have been identified as low-cost bifunctional catalysts. However, their applications are limited due to their weak acid character. Thus, elaborated modifications of these systems can significantly contribute to increasing their activities and selectivity. This work consists in the study, through DFT calculations, of the properties of the bulk and the surface of feroxyhyte (δ-FeOOH) doped with niobium, as a potential bifunctional catalyst. We identified the formation of stronger van der Waals interactions among the doped δ-FeOOH layers, which can increase the thermal stability of the catalyst. In addition, evidence has been found that the insertion of Nb increases Brönsted acidity and gives rise to new Lewis acid sites on the catalyst surface.

3.
Dalton Trans ; 47(9): 2852-2866, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29210398

RESUMEN

The intercalated layered materials are commonly built from structures complex enough to have large unit cells and, because of this, calculations of their electronic structures are very demanding in terms of memory, processing and time. Also, the versatility of these compounds enables the synthesis of a large number of derived materials difficult to characterize. Only in the last two decades, a combination of theoretical methodologies and advances in processing made density-functional theory (DFT) calculations quite interesting as an investigation tool for this family of materials. Since the intercalated layered or lamellar compounds correspond to a large group of important classes of materials and their experimental data were, and are still being, generated, only a small part of the data comes from electronic structure simulations. In this review, we have listed some relevant types of intercalated lamellar materials, the useful methodologies implemented in the standard suit of codes for DFT calculations and examples of the many applications of the calculations to the understanding of physical and chemical properties, to the planning of novel materials with desirable properties, and even to assist the structural characterization, by simulating complex results from nuclear magnetic resonance, vibrational spectroscopy and powder X-ray diffraction. In addition to the properties simulated directly as observables, other quantities such as density of states, partial charges and electronic density difference, provide relevant information about the materials and their behavior under diverse physical and chemical conditions. The combination of the geometric, electronic and vibrational structures also leads to the simulations of thermodynamic potentials, entropy and phase diagrams in the solid state. This significant ensemble of research tools makes DFT calculations very compelling and useful to gain new insights into innovation developments for intercalated lamellar materials.

4.
J Pharm Sci ; 105(9): 2648-2655, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26372719

RESUMEN

The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.


Asunto(s)
Carbazoles/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Propanolaminas/química , Isótopos de Carbono/química , Carvedilol , Cristalización , Cristalografía por Rayos X , Estructura Molecular , Isótopos de Nitrógeno/química
5.
J Phys Chem A ; 113(23): 6494-9, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19445473

RESUMEN

The reaction of HF molecules with brucite, Mg(OH)(2), leading to the formation of Mg(OH)(2-x)F(x), was theoretically studied by ab initio density functional theory (DFT) with periodic boundary conditions. We proposed as mechanism for this reaction four elementary steps: adsorption of the HF molecule, OH(-) liberation from brucite as a water molecule, desorption of the newly formed H(2)O, and rearrangement of the F(-) anion into a hydroxyl position. For the Mg(OH)(2-x)F(x) formation, with x = 1/9, the final product, outcome from an initially adsorbed HF molecule, we computed the Helmholtz free energy variation DeltaF = -23 kcal/mol. The calculated frequency for the most intense infrared band, a Mg-F stretching mode, was 342 cm(-1). Two transition states, corresponding to the hydroxyl reacting with a proton forming a water molecule and migration of a fluoride anion into a hydroxyl vacancy, were computed. The calculated reaction barriers indicate that the reaction between Mg(OH)(2) layers and HF molecules is slow and irreversible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...