Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192045

RESUMEN

Major depressive disorder (MDD) is a leading cause of disability worldwide. While traditional pharmacological treatments are effective for many cases, a significant proportion of patients do not achieve full remission or experience side effects. Nutritional interventions hold promise as an alternative or adjunctive approach, especially for treatment-resistant depression. This review examines the potential role of nutrition in managing MDD through addressing biological deficits and modulating pathways relevant to its pathophysiology. Specifically, it explores the ketogenic diet and gut microbiome modulation through various methods, including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation. Numerous studies link dietary inadequacies to increased MDD risk and deficiencies in nutrients like omega-3 s, vitamins D and B, magnesium, and zinc. These deficiencies impact neurotransmitters, inflammation, and other biological factors in MDD. The gut-brain axis also regulates mood, stress response, and immunity, and disruptions are implicated in MDD. While medications aid acute symptoms, nutritional strategies may improve long-term outcomes by preventing relapse and promoting sustained remission. This comprehensive review aims to provide insights into nutrition's multifaceted relationship with MDD and its potential for developing more effective integrated treatment approaches.

2.
Diabetes Obes Metab ; 26(10): 4551-4561, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39118207

RESUMEN

AIM: To investigate the effects of ß-hydroxybutyrate (BHB) and melatonin on brown adipose tissue (BAT) plasticity in rats fed a high-fat diet (HFD). METHODS: We employed a 7-week experimental design for a study on 30 male Sprague-Dawley rats divided into five groups: (1) a control-diet fed group; (2) a high-fat diet (HFD)-fed group; (3) a group that received an HFD and a BHB solution in their drinking water; (4) a group that received an HFD with 10 mg/kg/day melatonin in their drinking water; and (5) a group that received an HFD and were also treated with the combination of BHB and melatonin. Following the treatment period, biochemical indices, gene expression levels of key thermogenic markers (including uncoupling protein 1 [UCP1], PR domain containing 16 [PRDM16], Cidea, fat-specific protein 27 [Fsp27], and metallothionein 1 [MT1]), and stereological assessments of BAT were evaluated. RESULTS: Treatment with BHB and melatonin significantly boosted blood ketone levels, improved lipid profiles, and reduced weight gain from an HFD. It also downregulated genes linked to WAT, namely, Cidea and Fsp27, and upregulated key BAT markers, including UCP1, PRDM16 and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha. Additionally, the co-treatment increased MT1 receptor expression and enhanced the structural density of BAT. CONCLUSION: The combined oral administration of BHB and melatonin successfully prevented the whitening of BAT in obese rats fed an HFD, indicating its potential as a therapeutic strategy for obesity-related BAT dysfunction. The synergistic effects of this treatment underscore the potential of a combined approach to address BAT dysfunction in obesity.


Asunto(s)
Ácido 3-Hidroxibutírico , Dieta Alta en Grasa , Melatonina , Obesidad , Ratas Sprague-Dawley , Animales , Melatonina/farmacología , Masculino , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Ratas , Ácido 3-Hidroxibutírico/farmacología , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT1/genética , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Termogénesis/efectos de los fármacos
3.
J Inflamm (Lond) ; 21(1): 26, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982470

RESUMEN

BACKGROUND: Atherosclerosis is a chronic inflammatory condition affecting the large arteries and is a major cause of cardiovascular diseases (CVDs) globally. Increased levels of adhesion molecules in cardiac tissue serve as prognostic markers for coronary artery occlusion risk. Given the antioxidant properties of bilirubin and its inverse correlation with atherosclerosis, this study aimed to assess the beneficial effects of bilirubin on atherosclerotic indices and heart structure in high-fat diet-fed diabetic rats with atherosclerosis. METHODS: Atherosclerosis was induced in three out of five groups of adult male Sprague Dawley rats through a 14-week period of high-fat diet (HFD) consumption and a single low dose of streptozotocin (STZ) (35 mg/kg). The atherosclerotic rats were then treated with intraperitoneal administration of 10 mg/kg/day bilirubin for either 6 or 14 weeks (treated and protected groups, respectively), or the vehicle. Two additional groups served as the control and bilirubin-treated rats. Subsequently, the mRNA expression levels of vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), lectin-like LDL receptor 1 (LOX-1), and the inducible nitric oxide synthase (iNOS) were analyzed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Histopathological and stereological analyses were performed to assess changes in the heart structure. RESULTS: Bilirubin significantly decreased the expression of VCAM-1, ICAM-1, LOX-1, and iNOS genes in the treated group. Moreover, bilirubin mitigated pathological damage in the left ventricle of the heart. Stereological analysis revealed a decrease in the left ventricle and myocardium volume, accompanied by an increase in vessel volume in rats treated with bilirubin. CONCLUSION: These findings demonstrate that mild hyperbilirubinemia can protect against the progression of atherosclerosis and heart failure by improving lipid profile, modulating adhesion molecules, LOX-1, and iNOS gene expression levels.

4.
Clin Chim Acta ; 560: 119753, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38821336

RESUMEN

Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder characterized by altered bowel habits and abdominal discomfort during defecation. It significantly impacts life quality and work productivity for those affected. Global data suggests a slightly higher prevalence in females than in males. Today, unambiguous diagnosis of IBS remains challenging due to the absence of a specific biochemical, histopathological, or radiological test. Current diagnosis relies heavily on thorough symptom evaluation. Efforts by the Rome committees have established standardized diagnostic criteria (Rome I-IV), improving consistency and clinical applicability. Recent studies in this framework, seem to have successfully employed metabolomics techniques to identify distinct metabolite profiles in breath and stool samples of IBS patients, differentiating them from healthy controls and those with other functional GI disorders, such as inflammatory bowel disease (IBD). Building on this success, researchers are investigating the presence of similar metabolites in easily accessible biofluids such as urine, potentially offering a less invasive diagnostic approach. Accordingly, this review focuses on key metabolites specifically detected in IBS patients' biological specimens, with a focus on urinary metabolites, using various methods, particularly mass spectrometry (MS)-based techniques, including gas chromatography-MS (GC-MS), liquid chromatography-tandem MS (LC-MS/MS), and capillary electrophoresis-MS (CE-MS) metabolomics assays. These findings may make provision for a new set of non-invasive biomarkers for IBS diagnosis and management.


Asunto(s)
Biomarcadores , Síndrome del Colon Irritable , Metabolómica , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/metabolismo , Humanos , Biomarcadores/orina , Biomarcadores/metabolismo , Biomarcadores/análisis , Metabolómica/métodos
5.
Clin Chim Acta ; 557: 117878, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493942

RESUMEN

Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.


Asunto(s)
Técnicas Biosensibles , Glioblastoma , Técnicas Biosensibles/métodos , Detección Precoz del Cáncer , Técnicas Electroquímicas , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética
6.
Metabolism ; 154: 155811, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309690

RESUMEN

The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Respuesta de Proteína Desplegada , Hígado/metabolismo , Autofagia/fisiología
7.
Cell Commun Signal ; 22(1): 107, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341592

RESUMEN

Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/ß-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , ARN Circular/genética , Infecciones por Papillomavirus/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-37357514

RESUMEN

Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.


Asunto(s)
Hepatopatías , Errores Innatos del Metabolismo , Humanos , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Hepatopatías/diagnóstico , Hepatopatías/etiología , Redes y Vías Metabólicas
9.
Ann Hematol ; 103(5): 1455-1482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37526673

RESUMEN

Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.


Asunto(s)
Leucemia , MicroARNs , Neoplasias , Humanos , ARN no Traducido/genética , Transducción de Señal/genética , Leucemia/tratamiento farmacológico , Leucemia/genética , Resistencia a Medicamentos , MicroARNs/metabolismo
10.
Sci Rep ; 13(1): 17402, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833303

RESUMEN

Improved evidence on the most common and severe types of head impacts in ice hockey can guide efforts to preserve brain health through improvements in protective gear, rink design, player training, and rules of play. In this observational cohort study of men's university hockey, we compared video evidence on the circumstances of 234 head impacts to measures of head impact severity (peak linear accelerations and rotational velocities) from helmet-mounted sensors (GForceTracker). Videos were analyzed with a validated questionnaire, and paired with helmet sensor data. Shoulder-to-head impacts were more common than hand- or elbow-, but there were no differences in head impact severity between upper limb contact sites (p ≥ 0.2). Head-to-glass impacts were nearly four times more common, and just as severe as head-to-board impacts (p ≥ 0.4). Head impacts resulting in major penalties (versus no penalty), or visible signs of concussion (versus no signs), involved greater head rotational velocities (p = 0.038 and 0.049, respectively). Head impacts occurred most often to the side of the head, along the boards to players in their offensive zone without puck possession. Head impact severity did not differ between cases where the head was (versus was not) the primary site of contact (p ≥ 0.6). Furthermore, penalties were called in only 4% of cases where the head was the initial point of contact. Accordingly, rules that focus on primary targeting of the head, while important and in need of improved enforcement, offer a limited solution.


Asunto(s)
Conmoción Encefálica , Hockey , Masculino , Humanos , Universidades , Conmoción Encefálica/epidemiología , Cabeza , Encéfalo , Aceleración , Fenómenos Biomecánicos
11.
Biochem Biophys Res Commun ; 672: 161-167, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37354609

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the commonest neoplasms worldwide, which its pathogenesis is strongly correlated with p53 mutations. Antioxidants are believed to decelerate the CRC progression, possibly through interfering with p53 and its downstream target genes and mechanisms. Regarding the potential antioxidant effects of bilirubin, as an incredible endogenous antioxidant, we sought to investigate how bilirubin affected the expression levels of p53 protein and its downstream target genes, including Mdm2, Bcl-2, BECN1 and LC3, in LS180 and SW480 cell culture models of CRC. METHODS AND RESULTS: Using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide) assay, 50 and 100 µM concentrations of bilirubin were determined to be non-toxic for both LS180 and SW480 cell lines. Western blot analysis was employed to evaluate the protein expression levels of p53. The results revealed that p53 protein levels were higher in LS180 cells treated with bilirubin compared to the control group. Notwithstanding, in SW480 cells, no considerable changes were observed in p53 protein levels of treated cells compared to the control ones. The quantitative reverse transcriptase-polymerase chain reaction (q RT-PCR) method was used to measure the mRNA expression levels of the apoptosis/autophagy-related genes, Mdm2, Bcl-2, BECN1, and LC3 , as the p53's downstream target genes. Consequently, the expression of Bcl-2 and Mdm2 genes were affected by p53, while BECN1 and LC3 expression levels were decreased in both cell lines. CONCLUSION: Bilirubin is an endogenous antioxidant with significant anti-tumor effects in the studied CRC cell lines, probably through the regulation of p53 protein expression levels and subsequent control of apoptosis and autophagy, as two key processes involved in cell survival and progression of tumor cells.


Asunto(s)
Antioxidantes , Neoplasias Colorrectales , Humanos , Antioxidantes/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Bilirrubina/metabolismo , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Técnicas de Cultivo de Célula , Neoplasias Colorrectales/patología , Autofagia , Proliferación Celular
12.
Med Oncol ; 40(7): 199, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294480

RESUMEN

Colorectal cancer (CRC) is a prevalent gastrointestinal neoplasm that ranks fourth in terms of cancer-related deaths worldwide. In the process of CRC progression, multiple ubiquitin-conjugating enzymes (E2s) are involved; UBE2Q1 is one of those newly identified E2s that is markedly expressed in human colorectal tumors. Since p53 is a well-known tumor suppressor and defined as a key factor to be targeted by the ubiquitin-proteasome system, we hypothesized that UBE2Q1 might contribute to CRC progression through the modulation of p53. Using the lipofection method, the cultured SW480 and LS180 cells were transfected with the UBE2Q1 ORF-containing pCMV6-AN-GFP vector. Then, quantitative RT-PCR was used to assay the mRNA expression levels of p53's target genes, i.e., Mdm2, Bcl2, and Cyclin E. Moreover, Western blot analysis was performed to confirm the cellular overexpression of UBE2Q1 and assess the protein levels of p53, pre- and post-transfection. The expression of p53's target genes were cell line-dependent except for Mdm2 that was consistent with the findings of p53. The results of Western blotting demonstrated that the protein levels of p53 were greatly lower in UBE2Q1-transfected SW480 cells compared to the control SW480 cells. However, the reduced levels of p53 protein were not remarkable in the transfected LS180 cells compared to the control cells. The suppression of p53 is believed to be the result of UBE2Q1-dependent ubiquitination and its subsequent proteasomal degradation. Furthermore, the ubiquitination of p53 can act as a signal for degradation-independent functions, such as nuclear export and suppressing the p53's transcriptional activities. In this context, the decreased Mdm2 levels can moderate the proteasome-independent mono-ubiquitination of p53. The ubiquitinated p53 modulates the transcriptional levels of target genes. Therefore, the up-modulation of UBE2Q1 may influence the transcriptional activities depending on p53, and thereby contributes to CRC progression through regulating the p53.


Asunto(s)
Neoplasias Colorrectales , Enzimas Ubiquitina-Conjugadoras , Humanos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ubiquitinación , Neoplasias Colorrectales/patología
13.
Front Oncol ; 13: 1149187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124518

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.

14.
Front Pharmacol ; 14: 1152672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153758

RESUMEN

Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.

15.
Chem Biol Interact ; 378: 110490, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054934

RESUMEN

Diabetic kidney disease (DKD), as a chronic diabetes-induced complication, is considered the most frequent leading cause of end-stage renal disease (ESRD). Regarding the observed protective effects of bilirubin, as a potential endogenous antioxidant/anti-inflammatory compound, against DKD progression, we planned to evaluate the effects of bilirubin administration on endoplasmic reticulum (ER) stress and inflammation in type 2 diabetic (T2D) rats fed high-fat diet (HFD). In this regard, thirty 8-week adult male Sprague Dawley rats were divided into five groups (n = 6). T2D and obesity were induced by streptozotocin (STZ) (35 mg/kg) and HFD (700 kcal/day), respectively. Bilirubin treatment was carried out for 6- and 14-week intervals (10 mg/kg/day), intraperitoneally. Then, the expression levels of ER stress-related genes (i.e. binding immunoglobulin protein (Bip), C/EBP homologous protein (Chop), and spliced x-box-binding protein 1 (sXbp1), as well as nuclear factor-κB (NF-κB) were analyzed using quantitative Real-time PCR experiments. Moreover, histopathological and stereological changes of kidney and its related structures were investigated for the studied rats. Bip, Chop, and NF-κB expression levels were significantly decreased under bilirubin treatment, while sXbp1 was up-regulated following the bilirubin administration. More interestingly, glomerular constructive damages seen in HFD-T2D rats, were considerably improved in the animals received bilirubin. Stereological assessments also revealed that bilirubin could desirably reverse the mitigation of kidney's total volume and its related structures, such as cortex, glomeruli, and convoluted tubules. Taken together, bilirubin has potential protective/ameliorative effects on DKD progression, especially through alleviating the renal ER stress and inflammatory responses in T2D rats with injured kidneys. In this era, clinical benefits of mild hyperbilirubinemia can be considered in human DKD.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , FN-kappa B/metabolismo , Bilirrubina/metabolismo , Dieta Alta en Grasa/efectos adversos , Riñón , Inflamación/metabolismo , Nefropatías Diabéticas/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico
16.
Mol Biol Rep ; 50(5): 4411-4422, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36971910

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is defined as the most prevalent hepatic disorder that affects a significant population worldwide. There are several genes/proteins, involving in the modulation of NAFLD pathogenesis; sirtuin1 (SIRT1), TP53-inducible regulator gene (TIGAR), and autophagy-related gene 5 (Atg5) are considered a chief group of these modulators that principally act by regulating the hepatic lipid metabolism, as well as preventing the lipid accumulation. Surprisingly, bilirubin, especially in its unconjugated form, might be able to alleviate NAFLD progression by decreasing lipid accumulation and regulating the expression levels of the above-stated genes. METHODS AND RESULTS: Herein, the interactions between bilirubin and the corresponding genes' products were first analyzed by docking assessments. Afterwards, HepG2 cells were cultured under the optimum conditions, and then were incubated with high concentrations of glucose to induce NAFLD. After treating normal and fatty liver cells with particular bilirubin concentrations for 24- and 48-hour periods, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay, colorimetric method, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) were employed to assess cell viability status, intracellular triglycerides content, and mRNA expression levels of the genes, respectively. Intracellular lipid accumulation of HepG2 cells was significantly decreased after treating with bilirubin. Bilirubin also increased SIRT1 and Atg5 gene expression levels in fatty liver cells. TIGAR gene expression levels were variable upon the conditions and the cell type, suggesting a dual role for TIGAR during the NAFLD pathogenesis. CONCLUSION: Our findings indicate the potential of bilirubin in the prevention from or amelioration of NAFLD through influencing SIRT1-related deacetylation and the process of lipophagy, as well as decreasing the intrahepatic lipid content. In vitro model of NAFLD was treated with unconjugated bilirubin under the optimal conditions.Desirably, bilirubin moderated the accumulation of triglycerides within the cells possibly through modulation of the expression of SIRT1, Atg5, and TIGAR genes. In the context, bilirubin was shown to increase the expression levels of SIRT1 and Atg5, while the expression of TIGAR was demonstrated to be either increased or decreased, depending on the treatment conditions. Created with BioRender.com.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos/genética , Triglicéridos/metabolismo , Factores de Transcripción/metabolismo , Técnicas de Cultivo de Célula , Ratones Endogámicos C57BL , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
17.
Arch Immunol Ther Exp (Warsz) ; 71(1): 8, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853269

RESUMEN

The aim of this prospective cohort study was to explore the effect of statins on long-term respiratory symptoms and pulmonary fibrosis in coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM). Patients were recruited from three tertiary hospitals, categorized into Statin or Non-statin groups, and assessed on days 0, 28, and 90 after symptoms onset to record the duration of symptoms. Pulmonary fibrosis was scored at baseline and follow-up time points by high-resolution computed tomography scans. Each group comprised 176 patients after propensity score matching. Data analysis revealed that the odds of having cough and dyspnea were significantly higher in the Non-statin group compared to the Statin group during the follow-up period. Overall, there was no significant difference in the change in pulmonary fibrosis score between groups. However, Non-statin patients with > 5 years of DM were more likely to exhibit a significantly higher fibrosis score during the follow-up period as compared to their peers in the Statin group. Our results suggest that the use of statins is associated with a lower risk of developing chronic cough and dyspnea in diabetic patients with COVID-19, and may reduce pulmonary fibrosis associated with COVID-19 in patients with long-term (> 5 years) DM.


Asunto(s)
COVID-19 , Diabetes Mellitus , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/tratamiento farmacológico , Tos , Estudios Prospectivos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/epidemiología , Disnea
18.
Biotechnol Appl Biochem ; 70(1): 318-329, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35484728

RESUMEN

Testosterone is an anabolic steroid and a major sex hormone in males. It plays vital roles, including developing the testis, penis, and prostate, increasing muscle and bone, and sperm production. In both men and women, testosterone levels should be in normal ranges. Besides, testosterone and its analogs are major global contributors to doping in sport. Due to the importance of testosterone testing, novel, accurate biosensors have been developed. This review summarizes the various methods for testosterone measurement. Also, recent optical and electrochemical approaches for the detection of testosterone and its analogs have been discussed.


Asunto(s)
Técnicas Biosensibles , Semen , Humanos , Masculino , Femenino , Testosterona
19.
Curr Mol Pharmacol ; 16(4): 448-464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36043753

RESUMEN

The increasing number of cases of diabetes mellitus (DM) and related diseases has become a global health concern. In this context, controlling blood glucose levels is critical to prevent and/or slow down the development of diabetes-related complications. Incretins, as gutderived hormones that trigger the post-meal secretion of insulin, are a well-known family of blood glucose modulators. Currently, incretin medications, including glucagon-like peptide-1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 (DPP-4) inhibitors, are extensively used to treat patients with type 2 diabetes mellitus (T2D). Several experimental and clinical studies illustrate that these metabolic hormones exert their antidiabetic effects through multiple molecular mechanisms. Accordingly, the current review aims to investigate key mechanisms and signaling pathways, such as the cAMP/PKA, Nrf2, PI3K/Akt, and AMPK pathways, associated with the antidiabetic effects of incretins. It also summarizes the outcomes of a group of clinical trials evaluating the incretins' antidiabetic potential in diabetic patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Incretinas/uso terapéutico , Incretinas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia/metabolismo , Fosfatidilinositol 3-Quinasas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico
20.
Biotechnol Appl Biochem ; 70(3): 1044-1056, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36445196

RESUMEN

The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Enfermedades Neurodegenerativas , Humanos , MicroARNs/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Técnicas Electroquímicas , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA