Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Phys Med Biol ; 59(23): 7159-79, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25365625

RESUMEN

This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.


Asunto(s)
Algoritmos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Electrones/uso terapéutico , Estudios de Factibilidad , Periodo Intraoperatorio , Método de Montecarlo , Reproducibilidad de los Resultados
2.
Comput Med Imaging Graph ; 31(6): 408-17, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17524617

RESUMEN

A shape-based genetic algorithm template-matching (GATM) method is proposed for the detection of nodules with spherical elements. A spherical-oriented convolution-based filtering scheme is used as a pre-processing step for enhancement. To define the fitness function for GATM, a 3D geometric shape feature is calculated at each voxel and then combined into a global nodule intensity distribution. Lung nodule phantom images are used as reference images for template matching. The proposed method has been validated on a clinical dataset of 70 thoracic CT scans (involving 16,800 CT slices) that contains 178 nodules as a gold standard. A total of 160 nodules were correctly detected by the proposed method and resulted in a detection rate of about 90%, with the number of false positives at approximately 14.6/scan (0.06/slice). The high-detection performance of the method suggested promising potential for clinical applications.


Asunto(s)
Algoritmos , Inteligencia Artificial , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Fantasmas de Imagen , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...