Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neuro Oncol ; 25(6): 1132-1145, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534940

RESUMEN

BACKGROUND: Choroid plexus carcinomas (CPCs) are rare aggressive pediatric tumors of the brain with no treatment standards. Genetic profiling of CPCs is often confined to possible association with Li-Fraumeni syndrome, though only about a half of CPCs develop from syndromic predispositions. Whole-chromosome gains and losses typical of CPCs reflect genomic instability of these tumors, but only partially explain the aggressive clinical course. METHODS: This retrospective study enrolled 25 pediatric patients with CPC, receiving treatment between January 2009 and June 2022. Molecular-genetic testing was performed for 20 cases with available tumor tissue and encompassed mutational status, chromosomal aberrations, and gene expression profiles. We analyzed several factors presumably influencing the outcomes, including molecular profiles and clinical parameters. The median follow-up constituted 5.2 years (absolute range 2.8-12.6 years). RESULTS: All studied CPCs had smooth mutational profiles with the only recurrent event being TP53 variants, either germline or somatic, encountered in 13 cases. Unbalanced whole-chromosome aberrations, notably multiple monosomies, were highly typical. In 7 tumors, chromosome losses were combined with complex genomic rearrangements: segmental gains and losses or signs of chromothripsis. This phenomenon was associated with extremely low 5-year survival: 20.0 ± 17.9% vs 85.7 ± 13.2%; P = .009. Transcriptomically, the cohort split into 2 polar clusters Ped_CPC1 and Ped_CPC2 differing by survival: 31.3 ± 17.8% vs 100%; P = .012. CONCLUSION: CPCs split into at least 2 molecular subtypes distinguished both genomically and transcriptomically. Clusterization of the tumors into Ped_CPC1 and Ped_CPC2 significantly correlates with survival. The distinction may prove relevant in clinical trials for dedicated and patient-oriented optimization of clinical protocols for these rare tumors.


Asunto(s)
Carcinoma , Neoplasias del Plexo Coroideo , Niño , Humanos , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/diagnóstico , Neoplasias del Plexo Coroideo/patología , Estudios Retrospectivos , Plexo Coroideo/patología , Pronóstico , Aberraciones Cromosómicas , Carcinoma/genética , Progresión de la Enfermedad
3.
Pathol Oncol Res ; 28: 1610024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498161

RESUMEN

Cell-free DNA (cfDNA) in body fluids is invaluable for cancer diagnostics. Despite the impressive potential of liquid biopsies for the diagnostics of central nervous system (CNS) tumors, a number of challenges prevent introducing this approach into routine laboratory practice. In this study, we adopt a protocol for sensitive detection of the H3 K27M somatic variant in cerebrospinal fluid (CSF) by using digital polymerase chain reaction (dPCR). Optimization of the protocol was carried out stepwise, including preamplification of the H3 target region and adjustment of dPCR conditions. The optimized protocol allowed detection of the mutant allele starting from DNA quantities as low as 9 picograms. Analytical specificity was tested using a representative group of tumor tissue samples with known H3 K27M status, and no false-positive cases were detected. The protocol was applied to a series of CSF samples collected from patients with CNS tumors (n = 18) using two alternative dPCR platforms, QX200 Droplet Digital PCR system (Bio-Rad) and QIAcuity Digital PCR System (Qiagen). In three out of four CSF specimens collected from patients with H3 K27M-positive diffuse midline glioma, both platforms allowed detection of the mutant allele. The use of ventricular access for CSF collection appears preferential, as lumbar CSF samples may produce ambiguous results. All CSF samples collected from patients with H3 wild-type tumors were qualified as H3 K27M-negative. High agreement of the quantitative data obtained with the two platforms demonstrates universality of the approach.


Asunto(s)
Ácidos Nucleicos Libres de Células , Glioma , Alelos , Histonas/genética , Humanos , Biopsia Líquida , Reacción en Cadena de la Polimerasa
8.
Oncologist ; 25(2): e198-e202, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32043779

RESUMEN

For pediatric patients with high-grade gliomas, standard-of-care treatment includes surgery, chemotherapy, and radiation therapy; however, most patients ultimately succumb to their disease. With advances in genomic characterization of pediatric high-grade gliomas, the use of targeted therapies in combination with current treatment modalities offer the potential to improve survival in this patient population. In this report, we present the case of a 3-year-old girl with glioblastoma who continues to experience an exceptional and durable response (>2 years) to the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib. Our patient presented with persistent and progressive seizure activity that upon workup was the result of a large heterogeneously enhancing, mixed cystic and solid mass in the left frontal-parietal-temporal region. Histopathologic analysis of resected tumor tissue confirmed the diagnosis of glioblastoma, and comprehensive genomic profiling demonstrated absence of any BRAF or H3F3A mutations. Genomic profiling, however, did reveal a probable germline heterozygous BRCA2 Lys3326Ter (K3226*) nonsense variant. After debulking surgery, the patient received standard-of-care treatment with radiation and temozolomide. Nine months later the PARP inhibitor olaparib was administered in combination with temozolomide for 16 cycles. This regimen was well tolerated by the patient and serial imaging showed reduction in tumor size. Since completion of the regimen, the patient remains neurologically intact with no evidence of tumor recurrence. To our knowledge, this represents the first case of a pediatric glioblastoma that maintains a durable response to a therapeutic strategy that included the PARP inhibitor olaparib and more generally highlights the potential clinical utility of incorporating these agents into the treatment of pediatric high-grade gliomas. KEY POINTS: Germline mutations detected in pediatric gliomas may represent a cancer predisposition syndrome. Integrating molecular testing into routine clinical care for pediatric patients with glioma is critical to identify therapeutic targets and patients with a cancer predisposition syndrome. Patients with glioma with defects in DNA repair pathway components (e.g., BRCA1/2) may show increased responsiveness to poly (ADP-ribose) polymerase (PARP) inhibitors. Combining PARP inhibitors with temozolomide (standard-of-care treatment) revealed no adverse events or toxicities over the course of 18 months.


Asunto(s)
Antineoplásicos , Glioblastoma , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Niño , Preescolar , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/uso terapéutico , Piperazinas , Temozolomida/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA