RESUMEN
Brazilian agricultural production provides a significant fraction of the food consumed globally, with the country among the top exporters of soybeans, sugar, and beef. However, current advances in Brazilian agriculture can be directly impacted by climate change and resulting biophysical effects. Here, we quantify these impacts until 2050 using GLOBIOM-Brazil, a global partial equilibrium model of the competition for land use between agriculture, forestry, and bioenergy that includes various refinements reflecting Brazil's specificities. For the first time, projections of future agricultural areas and production are based on future crop yields provided by two Global Gridded Crop Models (EPIC and LPJmL). The climate change forcing is included through changes in climatic variables projected by five Global Climate Models in two emission pathways (RCP2.6 and RCP8.5) participating in the ISIMIP initiative. This ensemble of twenty scenarios permits accessing the robustness of the results. When compared to the baseline scenario, GLOBIOM-Brazil scenarios suggest a decrease in soybeans and corn production, mainly in the Matopiba region in the Northern Cerrado, and southward displacement of agricultural production to near-subtropical and subtropical regions of the Cerrado and the Atlantic Forest biomes.
RESUMEN
This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.