Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mucosal Immunol ; 14(6): 1271-1281, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34341502

RESUMEN

Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.


Asunto(s)
Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Eosinófilos/inmunología , Eosinófilos/metabolismo , Factor de Transcripción Ikaros/genética , Alérgenos/inmunología , Animales , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Granulocitos/inmunología , Granulocitos/metabolismo , Humanos , Factor de Transcripción Ikaros/metabolismo , Inmunidad Innata , Inmunofenotipificación , Recuento de Leucocitos , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Receptores CCR3/genética , Receptores CCR3/metabolismo , Transducción de Señal
2.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34330753

RESUMEN

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Asunto(s)
Cromatina/genética , Eosinófilos/metabolismo , Epigénesis Genética/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Células Mieloides , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética
3.
Oncogene ; 40(12): 2182-2199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627785

RESUMEN

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Factor de Transcripción PAX3/genética , Rabdomiosarcoma/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Desarrollo de Músculos/genética , Proteína MioD/genética , Miogenina/genética , Rabdomiosarcoma/patología
4.
J Exp Med ; 217(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31653690

RESUMEN

Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.


Asunto(s)
Cromatina/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Factor de Transcripción AP-1/inmunología , Sitios de Unión/inmunología , Células Cultivadas , Ensamble y Desensamble de Cromatina/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Hipersensibilidad/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Esclerosis Múltiple/inmunología
5.
Methods Mol Biol ; 1783: 343-360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767371

RESUMEN

The massive amount of information produced by ChIP-Seq, RNA-Seq, and other next-generation sequencing-based methods requires computational data analysis. However, biologists performing these experiments often lack training in bioinformatics. BioWardrobe aims to bridge this gap by providing a convenient user interface and by automating routine data-processing steps. This protocol details the use of BioWardrobe for identifying and visualizing ChIP-Seq peaks, calculating RPKMs, performing differential binding or gene expression analysis, and creating plots and heat maps. We specifically describe how to use BioWardrobe's quality control measures for troubleshooting NGS-based experiments.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Control de Calidad , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA