Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Nanoscale ; 11(44): 21291-21301, 2019 Nov 28.
Article En | MEDLINE | ID: mdl-31667477

In the formulation of an active enzyme enclosed in a matrix for controlled delivery, it is a challenge to achieve a high protein load and to ensure high activity of the protein. For the first time to our knowledge, we report the use of a highly swollen lipid sponge (L3) phase for encapsulation of the large active enzyme, ß-galactosidase (ß-gal, 238 kDa). This enzyme has large relevance for applications in, e.g. the production of lactose free milk products. The formulation consisted of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) stabilised by polysorbate 80 (P80). The advantage of this type of matrix is that it can be produced on a large scale with a fairly simple and mild process as the system is in practice self-dispersing, yet it has a well-defined internal nano-structure. Minor effects on the sponge phase structure due to the inclusion of the enzyme were observed using small angle X-ray scattering (SAXS). The effect of encapsulation on the enzymatic activity and kinetic characteristics of ß-galactosidase activity was also investigated and can be related to the enzyme stability and confinement within the lipid matrix. The encapsulated ß-galactosidase maintained its activity for a significantly longer time when compared to the free solution at the same temperature. Differences in the particle size and charge of sponge-like nanoparticles (L3-NPs) with and without the enzyme were analysed by dynamic light scattering (DLS) and zeta-potential measurements. Moreover, all the initial ß-galactosidase was encapsulated within L3-NPs as revealed by size exclusion chromatography.


Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Kluyveromyces/enzymology , Nanoparticles/chemistry , beta-Galactosidase/chemistry , Caprylates/chemistry , Enzyme Stability , Glycerides/chemistry , Polysorbates/chemistry , Structure-Activity Relationship
2.
Biophys J ; 117(5): 829-843, 2019 09 03.
Article En | MEDLINE | ID: mdl-31422820

Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.


Aspartic Acid Proteases/metabolism , Enzymes, Immobilized/metabolism , Lipids/chemistry , Liquid Crystals/chemistry , Area Under Curve , Freeze Drying , Glycerol/pharmacology , Nanoparticles/chemistry , Particle Size , Scattering, Radiation , Spectrum Analysis, Raman
3.
J Phys Chem B ; 123(12): 2662-2672, 2019 03 28.
Article En | MEDLINE | ID: mdl-30785750

This work concerns the importance of intermolecular interactions present in aqueous lipid assembly systems depending on the type of aggregates they form. We have studied aqueous mixtures of diglycerol monooleate, Capmul glycerol monoleate (GMO-50) and polyoxyethylene (20) sorbitan monooleate (Polysorbate 80, P80) using small-angle X-ray scattering (SAXS) measurements to reveal the structure of liquid crystalline phases. On the basis of the SAXS data, a phase diagram was constructed. We discuss the effect of curvature changes of the lipid-aqueous interface obtained by changing the water content and the temperature. The results are related to the intermolecular interactions, as revealed by Raman spectroscopy, with a focus on the bilayer type of system of different curvature and bilayer flexibility, namely, the lamellar phase, bicontinuous cubic phase, and sponge phase. All phases show large similarities in their chain conformation and head group interactions as revealed by the Raman spectra, arising from the fact that all three structures are formed by lipid bilayers. However, subtle differences in the molecular organization of the sponge phase were revealed by employing Raman difference spectroscopy and by analysis of key spectroscopic indicators, which show a less dense hydrocarbon chain packing compared to the inverse bicontinuous cubic or lamellar phase.

4.
Soft Matter ; 15(10): 2178-2189, 2019 Mar 06.
Article En | MEDLINE | ID: mdl-30742188

The advantage of using nonlamellar lipid liquid crystalline phases has been demonstrated in many applications, such as drug delivery, protein encapsulation and crystallisation. We have recently reported that a mixture of mono- and diglycerides is able to form sponge-like nanoparticles (L3-NPs) with large enough aqueous pores to encapsulate macromolecules such as proteins. Here we use small angle neutron scattering (SANS) to reveal morphology, structural and chemical composition of these polysorbate 80 (P80) stabilized sponge phase nanoparticles, not previously known. Our results suggest that L3-NPs have a core-shell sphere structure, with a shell rich in P80. It was also found that even if P80 is mostly located on the surface, it also contributes to the formation of the inner sponge phase structure. An important aspect for the application and colloidal stability of these particles is their interfacial properties. Therefore, the interfacial behaviour of the nanoparticles on hydrophilic silica was revealed by Quartz crystal microbalance with dissipation (QCM-D) and neutron reflectivity (NR). Adsorption experiments reveal the formation of a thin lipid layer, with the dimension corresponding to a lipid bilayer after L3-NPs are in contact with hydrophilic silica. This suggests that the diglycerol monoleate/Capmul GMO-50/P80 particles reorganize themselves on this surface, probably due to interactions between P80 head group and SiO2.


Lipids/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Hydrophobic and Hydrophilic Interactions , Liquid Crystals/chemistry , Models, Molecular , Particle Size , Surface Properties
5.
Interface Focus ; 7(4): 20160150, 2017 Aug 06.
Article En | MEDLINE | ID: mdl-28630677

Biological membranes do not only occur as planar bilayer structures, but depending on the lipid composition, can also curve into intriguing three-dimensional structures. In order to fully understand the biological implications as well as to reveal the full potential for applications, e.g. for drug delivery and other biomedical devices, of such structures, well-defined model systems are required. Here, we discuss the formation of lipid non-lamellar liquid crystalline (LC) surface layers spin-coated from the constituting lipids followed by hydration of the lipid layer. We demonstrate that hybrid lipid polymer films can be formed with different properties compared with the neat lipid LC layers. The nanostructure and morphologies of the lipid films formed reflect those in the bulk. Most notably, mixed lipid layers, which are composed of glycerol monooleate and diglycerol monooleate with poly(N-isopropylacrylamide) nanogels, can form films of reverse cubic phases that are capable of responding to temperature stimulus. Owing to the presence of the nanogel particles, changing the temperature not only regulates the hydration of the cubic phase lipid films, but also the lateral organization of the lipid domains within the lipid self-assembled film. This opens up the possibility for new nanostructured materials based on lipid-polymer responsive layers.

6.
Langmuir ; 32(34): 8650-9, 2016 08 30.
Article En | MEDLINE | ID: mdl-27482838

The lipid liquid crystalline sponge phase (L3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) was studied. In addition, sponge-like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and inner structure as a function of the DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase.

...