Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835372

RESUMEN

Hypertension, a multifactorial chronic inflammatory condition, is an important risk factor for neurovascular and neurodegenerative diseases, including stroke and Alzheimer's disease. These diseases have been associated with higher concentrations of circulating interleukin (IL)-17A. However, the possible role that IL-17A plays in linking hypertension with neurodegenerative diseases remains to be established. Cerebral blood flow regulation may be the crossroads of these conditions because regulating mechanisms may be altered in hypertension, including neurovascular coupling (NVC), known to participate in the pathogenesis of stroke and Alzheimer's disease. In the present study, the role of IL-17A on NVC impairment induced by angiotensin (Ang) II in the context of hypertension was examined. Neutralization of IL-17A or specific inhibition of its receptor prevents the NVC impairment (p < 0.05) and cerebral superoxide anion production (p < 0.05) induced by Ang II. Chronic administration of IL-17A impairs NVC (p < 0.05) and increases superoxide anion production. Both effects were prevented with Tempol and NADPH oxidase 2 gene deletion. These findings suggest that IL-17A, through superoxide anion production, is an important mediator of cerebrovascular dysregulation induced by Ang II. This pathway is thus a putative therapeutic target to restore cerebrovascular regulation in hypertension.


Asunto(s)
Hipertensión , Interleucina-17 , Acoplamiento Neurovascular , Estrés Oxidativo , Humanos , Enfermedad de Alzheimer/etiología , Angiotensina II/metabolismo , Hipertensión/complicaciones , Hipertensión/fisiopatología , Interleucina-17/genética , Interleucina-17/metabolismo , NADPH Oxidasas/metabolismo , Acoplamiento Neurovascular/genética , Estrés Oxidativo/genética , Accidente Cerebrovascular/etiología , Superóxidos/metabolismo
2.
Front Physiol ; 12: 715446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475828

RESUMEN

Alzheimer's disease (AD), the most common form of dementia, is characterized by neuronal degeneration and cerebrovascular dysfunction. Increasing evidence indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD. This emphasizes the importance to investigate the tight coupling between neuronal activity and cerebral blood flow (CBF) termed neurovascular coupling (NVC). NVC depends on all cell types of the neurovascular unit within which astrocytes are important players in the progression of AD. Hence, the objective of this study was to characterize the hippocampal NVC in a mouse model of AD. Hippocampal NVC was studied in 6-month-old amyloid-beta precursor protein (APP) transgenic mice and their corresponding wild-type littermates using in vivo laser Doppler flowmetry to measure CBF in area CA1 of the hippocampus in response to Schaffer collaterals stimulation. Ex vivo two-photon microscopy experiments were performed to determine astrocytic Ca2+ and vascular responses to electrical field stimulation (EFS) or caged Ca2+ photolysis in hippocampal slices. Neuronal synaptic transmission, astrocytic endfeet Ca2+ in correlation with reactive oxygen species (ROS), and vascular reactivity in the presence or absence of Tempol, a mimetic of superoxide dismutase, were further investigated using electrophysiological, caged Ca2+ photolysis or pharmacological approaches. Whisker stimulation evoked-CBF increases and ex vivo vascular responses to EFS were impaired in APP mice compared with their age-matched controls. APP mice were also characterized by decreased basal synaptic transmission, a shorter astrocytic Ca2+ increase, and altered vascular response to elevated perivascular K+. However, long-term potentiation, astrocytic Ca2+ amplitude in response to EFS, together with vascular responses to nitric oxide remained unchanged. Importantly, we found a significantly increased Ca2+ uncaging-induced ROS production in APP mice. Tempol prevented the vascular response impairment while normalizing astrocytic Ca2+ in APP mice. These findings suggest that NVC is altered at many levels in APP mice, at least in part through oxidative stress. This points out that therapies against AD should include an antioxidative component to protect the neurovascular unit.

3.
J Am Heart Assoc ; 10(17): e020608, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34459216

RESUMEN

Background Angiotensin II (Ang II), a critical mediator of hypertension, impairs neurovascular coupling. Since astrocytes are key regulators of neurovascular coupling, we sought to investigate whether Ang II impairs neurovascular coupling through modulation of astrocytic Ca2+ signaling. Methods and Results Using laser Doppler flowmetry, we found that Ang II attenuates cerebral blood flow elevations induced by whisker stimulation or the metabotropic glutamate receptors agonist, 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid (P<0.01). In acute brain slices, Ang II shifted the vascular response induced by 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid towards vasoconstriction (P<0.05). The resting and 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid-induced Ca2+ levels in the astrocytic endfeet were more elevated in the presence of Ang II (P<0.01). Both effects were reversed by the AT1 receptor antagonist, candesartan (P<0.01 for diameter and P<0.05 for calcium levels). Using photolysis of caged Ca2+ in astrocytic endfeet or pre-incubation of 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester), we demonstrated the link between potentiated Ca2+ elevation and impaired vascular response in the presence of Ang II (P<0.001 and P<0.05, respectively). Both intracellular Ca2+ mobilization and Ca2+ influx through transient receptor potential vanilloid 4 mediated Ang II-induced astrocytic Ca2+ elevation, since blockade of these pathways significantly prevented the intracellular Ca2+ in response to 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid (P<0.05). Conclusions These results suggest that Ang II through its AT1 receptor potentiates the astrocytic Ca2+ responses to a level that promotes vasoconstriction over vasodilation, thus altering cerebral blood flow increases in response to neuronal activity.


Asunto(s)
Angiotensina II/metabolismo , Astrocitos/fisiología , Señalización del Calcio , Acoplamiento Neurovascular , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Animales , Bencimidazoles , Compuestos de Bifenilo , Calcio , Circulación Cerebrovascular , Masculino , Ratones Endogámicos C57BL , Receptor de Angiotensina Tipo 1 , Tetrazoles , Vasoconstricción
4.
Cell Rep ; 32(12): 108170, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966787

RESUMEN

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.


Asunto(s)
Anemia/etiología , Anemia/prevención & control , Bisfosfoglicerato Mutasa/deficiencia , Malaria Cerebral/enzimología , Malaria Cerebral/prevención & control , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Bisfosfoglicerato Mutasa/química , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Estabilidad de Enzimas , Eritrocitos/enzimología , Eritrocitos/parasitología , Eritropoyesis , Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Malaria Cerebral/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Parásitos/crecimiento & desarrollo , Plasmodium/crecimiento & desarrollo , Policitemia
5.
J Am Heart Assoc ; 8(9): e011630, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31057061

RESUMEN

Background Arterial stiffness is associated with cognitive decline and dementia; however, the precise mechanisms by which it affects the brain remain unclear. Methods and Results Using a mouse model based on carotid calcification this study characterized mechanisms that could contribute to brain degeneration due to arterial stiffness. At 2 weeks postcalcification, carotid stiffness attenuated resting cerebral blood flow in several brain regions including the perirhinal/entorhinal cortex, hippocampus, and thalamus, determined by autoradiography ( P<0.05). Carotid calcification impaired cerebral autoregulation and diminished cerebral blood flow responses to neuronal activity and to acetylcholine, examined by laser Doppler flowmetry ( P<0.05, P<0.01). Carotid stiffness significantly affected spatial memory at 3 weeks ( P<0.05), but not at 2 weeks, suggesting that cerebrovascular impairments precede cognitive dysfunction. In line with the endothelial deficits, carotid stiffness led to increased blood-brain barrier permeability in the hippocampus ( P<0.01). This region also exhibited reductions in vessel number containing collagen IV ( P<0.01), as did the somatosensory cortex ( P<0.05). No evidence of cerebral microhemorrhages was present. Carotid stiffness did not affect the production of mouse amyloid-ß (Aß) or tau phosphorylation, although it led to a modest increase in the Aß40/Aß42 ratio in frontal cortex ( P<0.01). Conclusions These findings suggest that carotid stiffness alters brain microcirculation and increases blood-brain barrier permeability associated with cognitive impairments. Therefore, arterial stiffness should be considered a relevant target to protect the brain and prevent cognitive dysfunctions.


Asunto(s)
Conducta Animal , Encéfalo/irrigación sanguínea , Arterias Carótidas/fisiopatología , Enfermedades de las Arterias Carótidas/complicaciones , Circulación Cerebrovascular , Cognición , Disfunción Cognitiva/etiología , Calcificación Vascular/complicaciones , Rigidez Vascular , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Enfermedades de las Arterias Carótidas/fisiopatología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Fragmentos de Péptidos/metabolismo , Memoria Espacial , Factores de Tiempo , Calcificación Vascular/fisiopatología , Proteínas tau/metabolismo
6.
J Am Heart Assoc ; 8(1): e009372, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30572753

RESUMEN

Background Immune cells are key regulators of the vascular inflammatory response characteristic of hypertension. In hypertensive rodents, regulatory T lymphocytes (Treg, CD 4+ CD 25+) prevented vascular injury, cardiac damage, and endothelial dysfunction of mesenteric arteries. Whether Treg modulate the cerebrovascular damage induced by hypertension is unknown. Methods and Results C57 BL /6 mice were perfused with angiotensin II (Ang II ; 1000 ng/kg per minute) for 14 days and adoptive transfer of 3×105 CD 4+ CD 25+ T cells was performed via 2 intravenous injections. Control mice received a sham surgery and PBS . Treg prevented Ang II -induced neurovascular uncoupling ( P<0.05) and endothelial impairment ( P<0.05), evaluated by laser Doppler flowmetry in the somatosensory cortex. The neuroprotective effect of Treg was abolished when they were isolated from mice deficient in interleukin-10. Administration of interleukin-10 (60 ng/d) to hypertensive mice prevented Ang II -induced neurovascular uncoupling ( P<0.05). Treg adoptive transfer also diminished systemic inflammation induced by Ang II ( P<0.05), examined with a peripheral blood cytokine array. Mice receiving Ang II + Treg exhibited reduced numbers of Iba-1+ cells in the brain cortex ( P<0.05) and hippocampus ( P<0.001) compared with mice infused only with Ang II. Treg prevented the increase in cerebral superoxide radicals. Overall, these effects did not appear to be directly modulated by Treg accumulating in the brain parenchyma, because only a nonsignificant number of Treg were detected in brain. Instead, Treg penetrated peripheral tissues such as the kidney, inguinal lymph nodes, and the spleen. Conclusions Treg prevent impaired cerebrovascular responses in Ang II -induced hypertension. The neuroprotective effects of Treg involve the modulation of inflammation in the brain and periphery.


Asunto(s)
Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , Hipertensión/inmunología , Inmunidad Innata , Linfocitos T Reguladores/inmunología , Angiotensina II/toxicidad , Animales , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Flujometría por Láser-Doppler , Masculino , Ratones , Ratones Endogámicos C57BL
7.
J Neuroinflammation ; 15(1): 62, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29490666

RESUMEN

BACKGROUND: Angiotensin II (Ang II), a peptide hormone involved in the development of hypertension, causes systemic and cerebral inflammation, affecting brain regions important for blood pressure control. The cause-and-effect relationship between hypertension and inflammation is two-way, but the role of blood pressure in the induction of cerebral inflammation is less clear. The vulnerability of specific brain regions, particularly those important for memory, is also of interest. METHODS: We used molecular biology approaches, immunohistochemistry, and electron microscopy to examine the interdependence between the hypertensive and pro-inflammatory effects of Ang II. We examined the effect of blood pressure by administering a subpressive (200 ng/kg/min) or a pressive Ang II dose (1000 or 1900 ng/kg/min) with and without hydralazine (150 mg/L) for 1 week and used phenylephrine to increase blood pressure independently of the renin-angiotensin system. RESULTS: Ang II increased ionized calcium-binding adaptor molecule 1 (Iba-1) levels (marker of microgliosis) in the whole brain and in the hippocampus in a dose-dependent manner. Pressive Ang II induced specific changes in microglial morphology, indicating differences in functional phenotype. An increase in hippocampal glial fibrillary acidic protein (GFAP) was seen in mice receiving pressive Ang II, while no induction of cerebral gliosis was observed after 7 days of subpressive Ang II infusion. Although phenylephrine led to increased astrogliosis, it did not affect Iba-1 expression. Pressive Ang II stimulated TNF-α production in the hippocampus, and daily treatment with hydralazine prevented this increase. Hydralazine also reduced GFAP and Iba-1 levels. With longer perfusion (14 days), subpressive Ang II led to some but not all the inflammatory changes detected with the pressive doses, mainly an increase in CD68 and Iba-1 but not of GFAP or TNF-α. CONCLUSIONS: Blood pressure and Ang II differentially contribute to hippocampal inflammation in mice. Control of blood pressure and Ang II levels should prevent or reduce brain inflammation and therefore brain dysfunctions associated with hypertension.


Asunto(s)
Angiotensina II/toxicidad , Presión Sanguínea/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipertensión/inducido químicamente , Hipertensión/patología , Animales , Presión Sanguínea/fisiología , Hipocampo/metabolismo , Hipertensión/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
8.
J Hypertens ; 36(2): 286-298, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28938336

RESUMEN

BACKGROUND: Arterial stiffness is a risk factor for cognitive decline and dementia. However, its precise effects on the brain remain unexplored. Using a mouse model of carotid stiffness, we investigated its effect on glial activation and oxidative stress. METHODS: Arterial stiffness was induced by the application of calcium chloride to the adventitial region of the right carotid. Superoxide anion production, NADPH activity and levels, as well as glial activation were examined with immunohistochemical and biochemical approaches, 2-week postcalcification. Antioxidant treatment was done with Tempol (1 mmol/l) administered in the drinking water during 2 weeks. RESULTS: The current study revealed that arterial stiffness increases the levels of the microglial markers ionized calcium-binding adapter molecule 1 and cluster of differentiation 68 in hippocampus, and of the astrocyte marker, s100 calcium binding protein ß in hippocampus and frontal cortex. The cerebral inflammatory effects of arterial stiffness were specific to the brain and not due to systemic inflammation. Treatment with Tempol prevented the increase in superoxide anion in mice with carotid stiffness and attenuated the activation of microglia and astrocytes in the hippocampus. To determine whether the increased oxidative stress derives from NADPH oxidase, superoxide anion production was assessed by incubating brain tissue in the presence of gp91ds-tat, a selective NADPH oxidase 2 inhibitor. This peptide inhibited superoxide anion production to a greater extent in the brains of mice with carotid calcification compared with controls. CONCLUSION: Carotid calcification leads to cerebral gliosis mediated by oxidative stress. Correcting arterial stiffness could offer a novel paradigm to protect the brain in populations where stiffness is prominent.


Asunto(s)
Encéfalo/irrigación sanguínea , Arterias Carótidas/patología , Gliosis/etiología , Calcificación Vascular/complicaciones , Animales , Antioxidantes , Circulación Cerebrovascular , Óxidos N-Cíclicos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Flujo Sanguíneo Regional , Marcadores de Spin , Rigidez Vascular
9.
Eur J Nutr ; 55(3): 941-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25916863

RESUMEN

PURPOSE: Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. METHODS: C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. RESULTS: Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/ß) and a decrease in the hepatic content of SREBP-1 (39 %). CONCLUSIONS: Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.


Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina , Ledum/química , Obesidad/sangre , Extractos Vegetales/farmacología , Rhododendron/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Glucemia/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Creatinina/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hígado Graso/prevención & control , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Triglicéridos/sangre
10.
Artículo en Inglés | MEDLINE | ID: mdl-25013446

RESUMEN

Vaccinium vitis-idaea, commonly known as lingonberry, has been identified among species used by the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes. In a previous study, the ethanol extract of berries of V. vitis-idaea enhanced glucose uptake in C2C12 muscle cells via stimulation of AMP-activated protein kinase (AMPK) pathway. The purpose of this study was to examine the effect of plant extract in a dietary mouse model of mild type 2 diabetes. C57BL/6 mice fed a high-fat diet (HFD, ∼35% lipids) for 8 weeks that become obese and insulin-resistant (diet-induced obesity, DIO) were used. Treatment began by adding V. vitis-idaea extract to HFD at 3 different concentrations (125, 250, and 500 mg/Kg) for a subsequent period of 8 weeks (total HFD, 16 weeks). The plant extract significantly decreased glycemia and strongly tended to decrease insulin levels in this model. This was correlated with a significant increase in GLUT4 content and activation of the AMPK and Akt pathways in skeletal muscle. V. vitis-idaea treatment also improved hepatic steatosis by decreasing hepatic triglyceride levels and significantly activated liver AMPK and Akt pathways. The results of the present study confirm that V. vitis-idaea represents a culturally relevant treatment option for Cree diabetics and pave the way to clinical studies.

11.
Artículo en Inglés | MEDLINE | ID: mdl-23864882

RESUMEN

We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines.

12.
Artículo en Inglés | MEDLINE | ID: mdl-23781256

RESUMEN

Populus balsamifera L. (BP) is a medicinal plant stemming from the traditional pharmacopoeia of the Cree of Eeyou Istchee (CEI-Northern Quebec). In vitro screening studies revealed that it strongly inhibited adipogenesis in 3T3-L1 adipocytes, suggesting potential antiobesity activity. Salicortin was identified, through bioassay-guided fractionation, as the active component responsible for BP's activity. The present study aimed to assess the potential of BP and salicortin at reducing obesity and features of the metabolic syndrome, in diet-induced obese C57Bl/6 mice. Mice were subjected to high fat diet (HFD) for sixteen weeks, with BP (125 or 250 mg/kg) or salicortin (12.5 mg/kg) introduced in the HFD for the last eight of the sixteen weeks. BP and salicortin effectively reduced whole body and retroperitoneal fat pad weights, as well as hepatic triglyceride accumulation. Glycemia, insulinemia, leptin, and adiponectin levels were also improved. This was accompanied by a small yet significant reduction in food intake in animals treated with BP. BP and salicortin (slightly) also modulated key components in signaling pathways involved with glucose regulation and lipid oxidation in the liver, muscle, and adipose tissue. These results confirm the validity of the CEI pharmacopoeia as alternative and complementary antiobesity and antidiabetic therapies.

13.
J Am Heart Assoc ; 2(3): e000224, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23782921

RESUMEN

BACKGROUND: Arterial stiffness has been identified as an important risk factor for cognitive decline. However, its effects on the brain's health are unknown, and there is no animal model available to study the precise impact of arterial stiffness on the brain. Therefore, the objective of the study was to develop and characterize a new model specific to arterial stiffness in order to study its effects on the brain. METHODS AND RESULTS: Calcium chloride (CaCl2) was applied to carotid arteries of mice, inducing an increase in collagen distribution and intima-media thickness, a fragmentation of elastin, a decrease in arterial compliance and distensibility, and an increase in cerebral blood flow pulsatility (n=3 to 11). Calcium deposits were only present at the site of CaCl2 application, and there was no increase in systemic blood pressure or change in vessel radius making this model specific for arterial stiffness. The effects of carotid stiffness were then assessed in the brain. Carotid calcification induced an increase in the production of cerebral superoxide anion and neurodegeneration, detected with Fluoro-Jade B staining, in the hippocampus (n=3 to 5), a key region for memory and cognition. CONCLUSIONS: A new model of arterial stiffness based on carotid calcification was developed and characterized. This new model meets all the characteristics of arterial stiffness, and its specificity allows the study of the effects of arterial stiffness on the brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Arterias Carótidas/patología , Calcificación Vascular/complicaciones , Rigidez Vascular , Animales , Arterias Carótidas/fisiopatología , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Flujo Sanguíneo Regional
14.
Artículo en Inglés | MEDLINE | ID: mdl-22888363

RESUMEN

Larix laricina K. Koch is a medicinal plant belonging to traditional pharmacopoeia of the Cree of Eeyou Istchee (Eastern James Bay area of Canada). In vitro screening studies revealed that, like metformin and rosiglitazone, it increases glucose uptake and adipogenesis, activates AMPK, and uncouples mitochondrial function. The objective of this study was to evaluate the antidiabetic and antiobesity potential of L. laricina in diet-induced obese (DIO) C57BL/6 mice. Mice were subjected for eight or sixteen weeks to a high fat diet (HFD) or HFD to which L. laricina was incorporated at 125 and 250 mg/kg either at onset (prevention study) or in the last 8 of the 16 weeks of administration of the HFD (treatment study). L. laricina effectively decreased glycemia levels, improved insulin resistance, and slightly decreased abdominal fat pad and body weights. This occurred in conjunction with increased energy expenditure as demonstrated by elevated skin temperature in the prevention study and improved mitochondrial function and ATP synthesis in the treatment protocol. L. laricina is thus a promising alternative and complementary therapeutic approach for the treatment and care of obesity and diabetes among the Cree.

15.
J Ethnopharmacol ; 141(3): 1012-20, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22504062

RESUMEN

ETHNOBOTANICAL RELEVANCE: : In previous in vitro bioassay studies, Populus balsamifera L. (Salicaceae), a medicinal plant ethnobotanically identified from the traditional pharmacopoeia of the Cree of Eeyou Istchee (Eastern James Bay area of Canada), exhibited a strong anti-obesity potential by potently inhibiting adipogenesis in 3T3-L1 adipocytes. The aim of the study is to evaluate the effectiveness of this plant extract in mitigating the development of obesity and the metabolic syndrome in diet-induced obese (DIO) C57BL/6 mice. MATERIALS AND METHODS: Mice were subjected for eight weeks to a standard diet (CHOW), a high fat diet (HFD; DIO group), or HFD to which Populus balsamifera was incorporated at 125 and 250 mg/kg. RESULTS: The results showed that Populus balsamifera decreased in a dose-dependent manner the weight gain of whole body, retroperitoneal fat pad and liver as compared to DIO controls and reduced the severity of hepatic macrovesicular steatosis and triglyceride accumulation. This plant extract also decreased glycemia in the second half of the feeding period and improved insulin sensitivity by diminishing insulin levels and the leptin/adiponectin ratio, as well as augmenting adiponectin levels. These effects were associated with slightly but significantly reduced food intake with 250 mg/kg Populus balsamifera as well as with an increase in energy expenditure (increase in skin temperature and increased expression of uncoupling protein-1; UCP-1). Data also suggest other mechanisms, such as inhibition of adipocyte differentiation, decrease of hepatic inflammatory state and potential increase in hepatic fatty acid oxidation. CONCLUSION: Taken together, these results confirm the potential of Populus balsamifera as a culturally adapted therapeutic approach for the care and treatment of obesity and diabetes among the Cree.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Populus , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Obesidad/metabolismo , Extractos Vegetales/farmacología , Temperatura Cutánea , Triglicéridos/metabolismo
16.
Int J Hepatol ; 2011: 136816, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22013536

RESUMEN

We explored the therapeutic effect of NCX 1000, a derivative of ursodeoxycholic acid (UDCA) with nitric oxide (NO) donating properties, alone or in combination with vitamin E, in an experimental model of NASH in the rat. Methods. A control group was fed a standard liquid diet (Control), and the NASH groups were fed a high-fat liquid diet for 12 weeks without (NASH) or with simultaneous daily gavage with either NCX 1000 at 15 or 30 mg/kg (N15 and N30, resp.), or N15 plus vitamin E 100 mg/kg (N15 + VitE) for the last 6 weeks; UDCA 17.2 mg/kg was used as a reference. Results. NASH rats developed all key features of the disease. Treatments with N30 improved liver histology, decreased lipid peroxidation, and completely suppressed increases in LDH release, plasma insulin, and TNF-α. It also decreased O(2) (∙-) release and returned liver weight and glutathione back to normal. All effects were similar to the reference treatment, UDCA. The N15 treatment was less efficient than the N30 group, but became comparable to the latter when combined to vitamin E. Conclusion. Our study demonstrates that NCX 1000 has potent cytoprotective, antioxidant, and hypoinsulinemic properties that can be enhanced by combination with vitamin E.

17.
Artículo en Inglés | MEDLINE | ID: mdl-19884114

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a progressive liver disease related to the metabolic syndrome, obesity and diabetes. The rising prevalence of NASH and the lack of efficient treatments have led to the exploration of different therapeutic approaches. Milk thistle (Silibum marianum) is a medicinal plant used for its hepatoprotective properties in chronic liver disease since the 4th century BC. We explored the therapeutic effect of silibinin, the plant's most biologically active extract, in an experimental rat NASH model. A control group was fed a standard liquid diet for 12 weeks. The other groups were fed a high-fat liquid diet for 12 weeks without (NASH) or with simultaneous daily supplement with silibinin-phosphatidylcholine complex (Silibinin 200 mg kg(-1)) for the last 5 weeks. NASH rats developed all key hallmarks of the pathology. Treatment with silibinin improved liver steatosis and inflammation and decreased NASH-induced lipid peroxidation, plasma insulin and TNF-α. Silibinin also decreased O(2) (∙-) release and returned the relative liver weight as well as GSH back to normal. Our results suggest that milk thistle's extract, silibinin, possesses antioxidant, hypoinsulinemic and hepatoprotective properties that act against NASH-induced liver damage. This medicinal herb thus shows promising therapeutic potential for the treatment of NASH.

18.
Mol Nutr Food Res ; 54(12): 1753-62, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20603833

RESUMEN

SCOPE: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. METHODS AND RESULTS: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 µg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. CONCLUSION: Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical.


Asunto(s)
Ácidos Anacárdicos/farmacología , Anacardium/química , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Fibras Musculares Esqueléticas/citología , Semillas/química , Análisis de Varianza , Animales , Western Blotting , Línea Celular , Insulina/metabolismo , Masculino , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Células Musculares/citología , Células Musculares/metabolismo , Nueces/química , Fosforilación Oxidativa , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Receptor de Insulina/metabolismo
19.
Mol Nutr Food Res ; 54(7): 991-1003, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20087853

RESUMEN

Several medicinal plants that stimulate glucose uptake in skeletal muscle cells were identified from among species used by the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes. This study aimed to elucidate the mechanism of action of one of these products, the berries of Vaccinium vitis idaea, as well as to isolate and identify its active constituents using a classical bioassay-guided fractionation approach. Western immunoblot analysis in C2C12 muscle cells revealed that the ethanol extract of the berries stimulated the insulin-independent AMP-activated protein kinase (AMPK) pathway. The extract mildly inhibited ADP-stimulated oxygen consumption in isolated mitochondria, an effect consistent with metabolic stress and the ensuing stimulation of AMPK. This mechanism is highly analogous to that of Metformin. Fractionation guided by glucose uptake activity resulted in the isolation of ten compounds. The two most active, quercetin-3-O-glycosides, enhanced glucose uptake by 38-59% (50 muM; 18 h treatment) in the absence of insulin. Quercetin aglycone, a minor constituent, stimulated uptake by 37%. The quercetin glycosides and the aglycone stimulated the AMPK pathway at concentrations of 25-100 muM, but only the aglycone inhibited ATP synthase in isolated mitochondria (by 34 and 79% at 25 and 100 muM, respectively). This discrepancy suggests that the activity of the glycosides may require hydrolysis to the aglycone form. These findings indicate that quercetin and quercetin 3-O-glycosides are responsible for the antidiabetic activity of V. vitis crude berry extract mediated by AMPK. These common plant products may thus have potential applications for the prevention and treatment of insulin resistance and other metabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Glicósidos/farmacología , Hipoglucemiantes/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Quercetina/farmacología , Vaccinium vitis-Idaea/química , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Diabetes Mellitus/dietoterapia , Diabetes Mellitus/prevención & control , Frutas/química , Glicósidos/química , Glicósidos/aislamiento & purificación , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Concentración de Iones de Hidrógeno , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Cinética , Masculino , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mioblastos Esqueléticos/metabolismo , Concentración Osmolar , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Quebec , Quercetina/análogos & derivados , Quercetina/química , Quercetina/aislamiento & purificación , Ratas , Ratas Wistar
20.
J Ethnopharmacol ; 127(2): 396-406, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19861154

RESUMEN

AIM: The purpose of the present study was to elucidate the mechanisms of action mediating enhancement of basal glucose uptake in skeletal muscle cells by seven medicinal plant products recently identified from the pharmacopeia of native Canadian populations (Spoor et al., 2006). METHODS: Activity of the major signaling pathways that regulate glucose uptake was assessed by western immunoblot in C2C12 muscle cells treated with extracts from these plant species. Effects of extracts on mitochondrial function were assessed by respirometry in isolated rat liver mitochondria. Metabolic stress induced by extracts was assessed by measuring ATP concentration and rate of cell medium acidification in C2C12 myotubes and H4IIE hepatocytes. Extracts were applied at a dose of 15-100 microg/ml. RESULTS: The effect of all seven products was achieved through a common mechanism mediated not by the insulin signaling pathway but rather by the AMP-activated protein kinase (AMPK) pathway in response to the disruption of mitochondrial function and ensuing metabolic stress. Disruption of mitochondrial function occurred in the form of uncoupling of oxidative phosphorylation and/or inhibition of ATPsynthase. Activity of the AMPK pathway, in some instances comparable to that stimulated by 4mM of the AMP-mimetic AICAR, was in several cases sustained for at least 18h post-treatment. Duration of metabolic stress, however, was in most cases in the order of 1h. CONCLUSIONS: The mechanism common to the seven products studied here is analogous to that of the antidiabetic drug Metformin. Of interest is the observation that metabolic stress need not be sustained in order to induce important adaptive responses. The results support the use of these products as culturally adapted treatments for insulin resistance and hyperglycemia in susceptible aboriginal populations where adherence to modern diabetes pharmaceuticals is an issue. The mechanism reported here may be widespread and mediate the antidiabetic activity of traditional remedies from various other cultures.


Asunto(s)
Glucosa/metabolismo , Metformina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Plantas Medicinales , Animales , Canadá , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Metformina/análogos & derivados , Metformina/química , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Corteza de la Planta , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA