Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(2): e0144422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688651

RESUMEN

P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.


Asunto(s)
Especificidad del Huésped , Péptido Hidrolasas , Potyviridae , Proteínas Virales , Dedos de Zinc , Especificidad del Huésped/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Dedos de Zinc/genética
2.
Mol Biol Evol ; 40(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322467

RESUMEN

Eukaryotic genomics frequently revealed historical spontaneous endogenization events of external invading nucleic acids, such as viral elements. In plants, an extensive occurrence of endogenous plant pararetroviruses (EPRVs) is usually believed to endow hosts with an additional layer of internal suppressive weaponry. However, an actual demonstration of this activity remains speculative. We analyzed the EPRV component and accompanying silencing effectors of Solanum lycopersicum, documenting that intronic/intergenic pararetroviral integrations bearing inverted-repeats fuel the plant's RNA-based immune system with suitable transcripts capable of evoking a silencing response. A surprisingly small set of rearrangements explained a substantial fraction of pararetroviral-derived endogenous small-interfering (si)RNAs, enriched in 22-nt forms typically associated with anti-viral post-transcriptional gene silencing. We provide preliminary evidence that such genetic and immunological signals may be found in other species outside the genus Solanum. Based on molecular dating, bioinformatics, and empirical explorations, we propose that homology-dependent silencing emerging from particular immuno-competent rearranged chromosomal areas that constitute an adaptive heritable trans-acting record of past infections, with potential impact against the unlocking of plant latent EPRVs and cognate-free pararetroviruses.


Asunto(s)
Plantas , Solanum lycopersicum , Plantas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Solanum lycopersicum/genética
3.
PLoS Pathog ; 18(2): e1010332, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180277

RESUMEN

Cassava brown streak disease (CBSD), dubbed the "Ebola of plants", is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups.


Asunto(s)
Manihot , Potyviridae , Manihot/genética , Nucleótidos , Enfermedades de las Plantas , Potyviridae/genética , Pirofosfatasas , ARN Viral/análisis , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Espectrometría de Masas en Tándem
4.
PLoS One ; 15(11): e0242516, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211749

RESUMEN

Small (s)RNAs play crucial roles in the regulation of gene expression and genome stability across eukaryotes where they direct epigenetic modifications, post-transcriptional gene silencing, and defense against both endogenous and exogenous viruses. It is known that Chlamydomonas reinhardtii, a well-studied unicellular green algae species, possesses sRNA-based mechanisms that are distinct from those of land plants. However, definition of sRNA loci and further systematic classification is not yet available for this or any other algae. Here, using data-driven machine learning approaches including Multiple Correspondence Analysis (MCA) and clustering, we have generated a comprehensively annotated and classified sRNA locus map for C. reinhardtii. This map shows some common characteristics with higher plants and animals, but it also reveals distinct features. These results are consistent with the idea that there was diversification in sRNA mechanisms after the evolutionary divergence of algae from higher plant lineages.


Asunto(s)
Chlamydomonas reinhardtii/genética , Sitios Genéticos , ARN sin Sentido/genética , ARN de Planta/genética , Composición de Base , Análisis por Conglomerados , Metilación de ADN , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Aprendizaje Automático , Anotación de Secuencia Molecular
5.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055249

RESUMEN

Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.


Asunto(s)
Proteasas de Cisteína/metabolismo , Potyviridae/enzimología , Interferencia de ARN , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteasas de Cisteína/genética , Genes Supresores , Genoma Viral , Viabilidad Microbiana , Mutación , Filogenia , Enfermedades de las Plantas/virología , Poliproteínas , Potyviridae/genética , Dominios Proteicos , ARN Viral/genética , Proteínas Virales/genética
6.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071264

RESUMEN

The presence of CpG and UpA dinucleotides is restricted in the genomes of animal RNA viruses to avoid specific host defenses. We wondered whether a similar phenomenon exists in nonanimal RNA viruses. Here, we show that these two dinucleotides, especially UpA, are underrepresented in the family Potyviridae, the most important group of plant RNA viruses. Using plum pox virus (PPV; Potyviridae family) as a model, we show that an increase in UpA frequency strongly diminishes virus accumulation. Remarkably, unlike previous observations in animal viruses, PPV variants harboring CpG-rich fragments display just faint (or no) attenuation. The anticorrelation between UpA frequency and viral fitness additionally demonstrates the relevance of this particular dinucleotide: UpA-high mutants are attenuated in a dose-dependent manner, whereas a UpA-low variant displays better fitness than its parental control. Using high-throughput sequencing, we also show that UpA-rich PPV variants are genetically stable, without apparent changes in sequence that revert and/or compensate for the dinucleotide modification despite its attenuation. In addition, we also demonstrate here that the PPV restriction of UpA-rich variants works independently of the classical RNA silencing pathway. Finally, we show that the anticorrelation between UpA frequency and RNA accumulation applies to mRNA-like fragments produced by the host RNA polymerase II. Together, our results inform us about a dinucleotide-based system in plant cells that controls diverse RNAs, including RNA viruses.IMPORTANCE Dinucleotides (combinations of two consecutive nucleotides) are not randomly present in RNA viruses; in fact, the presence of CpG and UpA is significantly repressed in their genomes. Although the meaning of this phenomenon remains obscure, recent studies with animal-infecting viruses have revealed that their low CpG/UpA frequency prevents virus restriction via a host antiviral system that recognizes, and promotes the degradation of, CpG/UpA-rich RNAs. Whether similar systems act in organisms from other life kingdoms has been unknown. To fill this gap in our knowledge, we built several synthetic variants of a plant RNA virus with deoptimized dinucleotide frequencies and analyzed their viral fitness and genome adaptation. In brief, our results inform us for the first time about an effective dinucleotide-based system that acts in plants against viruses. Remarkably, this viral restriction in plants is reminiscent of, but not identical to, the equivalent antiviral response in animals.


Asunto(s)
Genoma Viral , Enfermedades de las Plantas/virología , Virus de Plantas/genética , ARN Viral/genética , Virosis/virología , Antivirales/farmacología , Islas de CpG/genética , Virus ADN/genética , Fosfatos de Dinucleósidos/genética , Inestabilidad Genómica , Enfermedades de las Plantas/inmunología , Virus de Plantas/efectos de los fármacos , Virus Eruptivo de la Ciruela , Potyviridae/genética , Potyvirus/genética , Interferencia de ARN , ARN Polimerasa II , ARN Mensajero/metabolismo , ARN Viral/inmunología , Virosis/inmunología
7.
Mol Plant Microbe Interact ; 33(1): 6-17, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31454296

RESUMEN

Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.


Asunto(s)
Interacciones Huésped-Patógeno , Virus Eruptivo de la Ciruela , Prunus , Resistencia a la Enfermedad/genética , Especificidad del Huésped , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/fisiología , Prunus/genética , Prunus/virología , Ensamble de Virus
8.
Sci Rep ; 9(1): 11091, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366981

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii is evolutionarily divergent from higher plants, but has a fully functional silencing machinery including microRNA (miRNA)-mediated translation repression and mRNA turnover. However, distinct from the metazoan machinery, repression of gene expression is primarily associated with target sites within coding sequences instead of 3'UTRs. This feature indicates that the miRNA-Argonaute (AGO) machinery is ancient and the primary function is for post transcriptional gene repression and intermediate between the mechanisms in the rest of the plant and animal kingdoms. Here, we characterize AGO2 and 3 in Chlamydomonas, and show that cytoplasmically enriched Cr-AGO3 is responsible for endogenous miRNA-mediated gene repression. Under steady state, mid-log phase conditions, Cr-AGO3 binds predominantly miR-C89, which we previously identified as the predominant miRNA with effects on both translation repression and mRNA turnover. In contrast, the paralogue Cr-AGO2 is nuclear enriched and exclusively binds to 21-nt siRNAs. Further analysis of the highly similar Cr-AGO2 and Cr-AGO 3 sequences (90% amino acid identity) revealed a glycine-arginine rich N-terminal extension of ~100 amino acids that, given previous work on unicellular protists, may associate AGO with the translation machinery. Phylogenetic analysis revealed that this glycine-arginine rich N-terminal extension is present outside the animal kingdom and is highly conserved, consistent with our previous proposal that miRNA-mediated CDS-targeting operates in this green alga.


Asunto(s)
Proteínas Argonautas/genética , Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas/genética , Expresión Génica/genética , MicroARNs/genética , Regiones no Traducidas 3'/genética , Evolución Biológica , Filogenia , Interferencia de ARN/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/genética
9.
Plant Cell Environ ; 42(11): 3015-3026, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31286514

RESUMEN

Plants use RNA silencing as a strong defensive barrier against virus challenges, and viruses counteract this defence by using RNA silencing suppressors (RSSs). With the objective of identifying host factors helping either the plant or the virus in this interaction, we have performed a yeast two-hybrid screen using P1b, the RSS protein of the ipomovirus Cucumber vein yellowing virus (CVYV, family Potyviridae), as a bait. The C-8 sterol isomerase HYDRA1 (HYD1), an enzyme involved in isoprenoid biosynthesis and cell membrane biology, and required for RNA silencing, was isolated in this screen. The interaction between CVYV P1b and HYD1 was confirmed in planta by Bimolecular Fluorescence Complementation assays. We demonstrated that HYD1 negatively impacts the accumulation of CVYV P1b in an agroinfiltration assay. Moreover, expression of HYD1 inhibited the infection of the potyvirus Plum pox virus, especially when antiviral RNA silencing was boosted by high temperature or by coexpression of homologous sequences. Our results reinforce previous evidence highlighting the relevance of particular composition and structure of cellular membranes for RNA silencing and viral infection. We report a new interaction of an RSS protein from the Potyviridae family with a member of the isoprenoid biosynthetic pathway.


Asunto(s)
Arabidopsis/enzimología , Proteínas de la Cápside/metabolismo , Oxidorreductasas/metabolismo , Virus Eruptivo de la Ciruela/metabolismo , Interferencia de ARN , Esteroide Isomerasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes , Mutación , Oxidorreductasas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Virus Eruptivo de la Ciruela/genética , Virus Eruptivo de la Ciruela/patogenicidad , Unión Proteica , Esteroide Isomerasas/genética , Temperatura , Nicotiana/metabolismo , Nicotiana/virología , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba
10.
Arch Virol ; 164(6): 1705-1709, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30880346

RESUMEN

In September 2017, Phellodendron amurense Rupr. plants showing yellow ringspots on leaves were observed in Liaoning, China. Flexuous filamentous particles (~1000 × 13 nm) were observed in the sap prepared from symptomatic leaves. A virus was detected in the symptomatic leaves by sequencing small RNAs and assembling the genome sequence. The complete genomic RNA was found to be 10,457 nucleotides in length excluding the poly(A) tail and to have the closest phylogenetic relationship to rose yellow mosaic virus (RoYMV), the sole member of newly established genus Roymovirus in the family Potyviridae. The coat protein gene (CP) of this virus shares 49.2% nucleotide and 55.1% amino acid sequence identity with that of RoYMV. These results suggest that this virus, which was named "phellodendron yellow ringspot-associated virus" (PYRaV) is a new member of the genus Roymovirus.


Asunto(s)
Phellodendron/virología , Enfermedades de las Plantas/virología , Potyviridae/clasificación , Análisis de Secuencia de ARN/métodos , Proteínas de la Cápside/genética , Tamaño del Genoma , Genoma Viral , Filogenia , Hojas de la Planta/virología , Potyviridae/genética , Potyviridae/aislamiento & purificación
11.
Viruses ; 11(3)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823402

RESUMEN

Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.


Asunto(s)
Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Virus de Plantas/fisiología , Plantas/virología , Autofagia , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Interferencia de ARN
12.
Proc Natl Acad Sci U S A ; 116(7): 2755-2760, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30679269

RESUMEN

Nucleotide binding site leucine-rich repeat (NLR) proteins of the plant innate immune system are negatively regulated by the miR482/2118 family miRNAs that are in a distinct 22-nt class of miRNAs with a double mode of action. First, they cleave the target RNA, as with the canonical 21-nt miRNAs, and second, they trigger secondary siRNA production using the target RNA as a template. Here, we address the extent to which the miR482/2118 family affects expression of NLR mRNAs and disease resistance. We show that structural differences of miR482/2118 family members in tomato (Solanum lycopersicum) are functionally significant. The predicted target of the miR482 subfamily is a conserved motif in multiple NLR mRNAs, whereas for miR2118b, it is a noncoding RNA target formed by rearrangement of several different NLR genes. From RNA sequencing and degradome data in lines expressing short tandem target mimic (STTM) RNAs of miR482/2118, we confirm the different targets of these miRNAs. The effect on NLR mRNA accumulation is slight, but nevertheless, the tomato STTM lines display enhanced resistance to infection with the oomycete and bacterial pathogens. These data implicate an RNA cascade of miRNAs and secondary siRNAs in the regulation of NLR RNAs and show that the encoded NLR proteins have a role in quantitative disease resistance in addition to dominant gene resistance that has been well characterized elsewhere. We also illustrate the use of STTM RNA in a biotechnological approach for enhancing quantitative disease resistance in highly bred cultivars.


Asunto(s)
Bacterias/patogenicidad , Repeticiones de Microsatélite , Imitación Molecular , Oomicetos/patogenicidad , ARN Mensajero/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Resistencia a la Enfermedad , MicroARNs/genética , ARN Mensajero/genética , ARN de Planta/genética , ARN de Planta/metabolismo
13.
Sci Rep ; 8(1): 15937, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374036

RESUMEN

Plant viruses usually encode proteins with RNA silencing suppression (RSS) activity to counteract plant defenses. In Potyvirus, the largest genus in the family Potyviridae, this role is taken over by the multifunctional HCPro, also involved in aphid transmission, polyprotein processing and virion formation. Recently, the large P1 of Sweet potato feathery mottle virus (SPFMV) was characterized finding an extra ORF produced after polymerase slippage, which originates the product P1N-PISPO. Transient expression assays showed that SPFMV P1 and P1N-PISPO presented RSS activity, while HCPro did not. In this work, we analyze possible differences between HCPro of SPFMV and other potyviruses, testing HCPro RSS activity in a transient expression assay, and using a Plum pox virus-based system to test the ability of SPFMV P1N-PISPO and HCPro to serve as RNA silencing suppressors in the context of a viral infection. Our results indicate that not only P1 and P1N-PISPO, but also HCPro display RSS activity when expressed in a suitable context, stressing the importance of the selected experimental system for testing anti-silencing capacity of proteins. The presence of multiple viral silencing suppressors in SPFMV adds complexity to an already intricate RSS system, and provides insight into the hypothetical evolution of sweet potato-infecting potyvirids.


Asunto(s)
Evolución Molecular , Ipomoea batatas/virología , Potyvirus/metabolismo , Interferencia de ARN , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Ipomoea batatas/genética , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/aislamiento & purificación , Alineación de Secuencia , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
14.
J Virol ; 92(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444942

RESUMEN

Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans, was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection.IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus Potyvirus), for instance, we have previously shown that the multitasking viral factor HCPro plays a role in the production of stable virions. Here, by using this potyvirus as a model, we move further to show that additional factors are also necessary for the efficient production of potyviral particles. More importantly, a comprehensive screening for such factors led us to the identification of a functional link between virus replication and packaging, unraveling a previously unknown connection of these two key events of the potyviral infection cycle.


Asunto(s)
Proteínas de la Cápside/genética , Virus Eruptivo de la Ciruela/genética , ARN Viral/genética , Ensamble de Virus/genética , Secuencia de Aminoácidos/genética , Secuencia de Bases , Genoma Viral/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Plásmidos/genética , Nicotiana/virología , Virión/genética , Virión/metabolismo
15.
Mol Plant Pathol ; 19(3): 744-763, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28371183

RESUMEN

RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Potyvirus/patogenicidad , Proteínas Virales/metabolismo , Cisteína Endopeptidasas/genética , Enfermedades de las Plantas/virología , Potyvirus/genética , Interferencia de ARN , ARN Viral/genética , Proteínas Virales/genética
16.
Genome Res ; 26(4): 519-29, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26968199

RESUMEN

We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species,Chlamydomonas reinhardtii Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Regulación de la Expresión Génica de las Plantas , Intrones , MicroARNs/genética , Interferencia de ARN , Ribonucleasa III/metabolismo , Regiones no Traducidas , Mapeo Cromosómico , Mutación , Ribonucleasa III/genética
17.
Proc Natl Acad Sci U S A ; 113(6): E801-10, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26787884

RESUMEN

RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21-24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Genoma de Planta , ARN de Planta/genética , Alelos , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Raíces de Plantas/genética , ARN de Planta/metabolismo
18.
J Virol ; 90(7): 3543-57, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792740

RESUMEN

UNLABELLED: The positive-sense RNA genome of Sweet potato feathery mottle virus (SPFMV) (genus Potyvirus, family Potyviridae) contains a large open reading frame (ORF) of 3,494 codons translatable as a polyprotein and two embedded shorter ORFs in the -1 frame: PISPO, of 230 codons, and PIPO, of 66 codons, located in the P1 and P3 regions, respectively. PISPO is specific to some sweet potato-infecting potyviruses, while PIPO is present in all potyvirids. In SPFMV these two extra ORFs are preceded by conserved G2A6 motifs. We have shown recently that a polymerase slippage mechanism at these sites could produce transcripts bringing these ORFs in frame with the upstream polyprotein, thus leading to P1N-PISPO and P3N-PIPO products (B. Rodamilans, A. Valli, A. Mingot, D. San Leon, D. B. Baulcombe, J. J. Lopez-Moya, and J.A. Garcia, J Virol 89:6965-6967, 2015, doi:10.1128/JVI.00337-15). Here, we demonstrate by liquid chromatography coupled to mass spectrometry that both P1 and P1N-PISPO are produced during viral infection and coexist in SPFMV-infected Ipomoea batatas plants. Interestingly, transient expression of SPFMV gene products coagroinfiltrated with a reporter gene in Nicotiana benthamiana revealed that P1N-PISPO acts as an RNA silencing suppressor, a role normally associated with HCPro in other potyviruses. Moreover, mutation of WG/GW motifs present in P1N-PISPO abolished its silencing suppression activity, suggesting that the function might require interaction with Argonaute components of the silencing machinery, as was shown for other viral suppressors. Altogether, our results reveal a further layer of complexity of the RNA silencing suppression activity within the Potyviridae family. IMPORTANCE: Gene products of potyviruses include P1, HCPro, P3, 6K1, CI, 6K2, VPg/NIaPro, NIb, and CP, all derived from the proteolytic processing of a large polyprotein, and an additional P3N-PIPO product, with the PIPO segment encoded in a different frame within the P3 cistron. In sweet potato feathery mottle virus (SPFMV), another out-of-frame element (PISPO) was predicted within the P1 region. We have shown recently that a polymerase slippage mechanism can generate the transcript variants with extra nucleotides that could be translated into P1N-PISPO and P3N-PIPO. Now, we demonstrate by mass spectrometry analysis that P1N-PISPO is indeed produced in SPFMV-infected plants, in addition to P1. Interestingly, while in other potyviruses the suppressor of RNA silencing is HCPro, we show here that P1N-PISPO exhibited this activity in SPFMV, revealing how the complexity of the gene content could contribute to supply this essential function in members of the Potyviridae family.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Ipomoea batatas/virología , Potyvirus/inmunología , Potyvirus/fisiología , Interferencia de ARN , Proteínas Virales/biosíntesis , Cromatografía Liquida , Espectrometría de Masas , Nicotiana/virología , Proteínas Virales/genética , Replicación Viral
20.
Virology ; 476: 264-270, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25562450

RESUMEN

The P1a protein of the ipomovirus Cucumber vein yellowing virus is one of the self-cleavage serine proteases present in Potyviridae family members. P1a is located at the N-terminal end of the viral polyprotein, and is closely related to potyviral P1 protease. For its proteolytic activity, P1a requires a still unknown host factor; this might be linked to involvement in host specificity. Here we built a series of constructs and chimeric viruses to help elucidate the role of P1a cleavage in host range definition. We demonstrate that host-dependent separation of P1a from the remainder of the polyprotein is essential for suppressing RNA silencing defenses and for efficient viral infection. These findings support the role of viral proteases as important determinants in host adaptation.


Asunto(s)
Especificidad del Huésped , Enfermedades de las Plantas/virología , Potyviridae/enzimología , Potyviridae/fisiología , Serina Proteasas/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Cucumis sativus/genética , Cucumis sativus/virología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , Potyviridae/química , Potyviridae/genética , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Serina Proteasas/genética , Nicotiana/genética , Nicotiana/virología , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...