Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Dalton Trans ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767612

In this work, the study of the new ligand 3,3'-bis[N,N-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn2+-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn2+ complexes. In the latter species, the presence of two Zn2+ ions coordinatively unsaturated and placed at close distance to each other, prompted us to test their usefulness as metallo-receptors for two environmental pollutants of great relevance, ibuprofen and ketoprofen. Potentiometric and fluorescence investigations evidenced that these important non-steroidal anti-inflammatory drugs (NSAIDs) are effectively coordinated by the metallo-receptors and, of relevance, both the stability and the fluorescence properties of the resulting ternary adducts are markedly affected by the different chemical architectures of the two substrates. This study aims at highlighting the promising perspectives arising from the use of polyamino phenolic ligands as chemosensors for H+/Zn2+ and other additional anionic targets in their metal-complexed forms.

2.
Chemistry ; : e202400834, 2024 May 08.
Article En | MEDLINE | ID: mdl-38716700

Ruthenium(II) polypyridyl complexes continue to raise increasing interest for the encouraging results in several biomedical areas. Considering their vast chemical-physical repertoire, in particular the possibility to switch from the sensitization of reactive oxygen species (ROS) to ROS-scavenging abilities by tuning the nature of their ligands, it is therefore surprising that their potential as antioxidants has not been largely investigated so far. Herein, we explored the antioxidant behaviour of the novel ruthenium compound [Ru(dbpy)(2,3-DAN)Cl]PF6 (Ru1), featuring a benzoxazole derivative (dpby = 2,6-bis(4-methyl-2-ossazolyl)pyridine) and the non-innocent 2,3-diamminonaftalene (2,3 DAN) ligand, along with the reference tpy-containing analogue [Ru(tpy)(2,3-DAN)Cl]PF6 (Ru2) (tpy = 2,2':6',2''-terpyridine). Following the synthesis and the electrochemical characterization, chemical antioxidant assays highlighted the beneficial role of dpby for the ROS-scavenging properties of Ru1. These data have been corroborated by the highest protective effect of Ru1 against the oxidative stress induced in SH-SY5Y human neuroblastoma, which exerts pro-survival and anti-inflammatory actions. The results herein reported highlight the potential of Ru1 as pharmacological tool in neurodegenerative diseases and specially prove that the antioxidant properties of such compounds are likely the result of a non-trivial synergetic action involving the bioactive ligands in their chemical architectures.

3.
Inorg Chem ; 63(14): 6248-6259, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38533555

The covalent modification of Ru(II) polypyridyl complexes (RPCs) with organic chromophores is a powerful strategy to obtain metal-based photosensitizer agents (PSs) with improved performance for application in photodynamic therapy (PDT). In this respect, perylene-imides are of particular interest due to their rich chemical-physical repertoire, and it is therefore quite surprising that their combination with RPCs has been poorly considered so far. Herein, we report on the photophysical behavior of two newly synthesized RPCs bearing a perylene monoimide appendant (PMI-Ad). Differently from the majority of RPCs-perylene-imides dyads, these chromophores are dissymmetric and are tethered to the metal centers through a single C-C bond in the 3- or 5-position of 1,10-phenanthroline (Ru-3PMI-Ad and Ru-5PMI-Ad). Both compounds show excellent singlet oxygen photosensitizing activity, with quantum yields reaching >90% in the case of Ru-3PMI-Ad. A combined spectroscopic and theoretical analysis, also involving transient absorption and luminescence lifetime measurements, demonstrates that both compounds undergo intersystem crossing on a very fast time scale (tens of picoseconds) and with high efficiency. Our results further demonstrate that the increased electron delocalization between the metal center and the PMI-Ad chromophore observed for Ru-3PMI-Ad additionally contributes to increase the singlet oxygen quantum yields by prolonging the lifetime of the triplet state.

4.
Inorg Chem ; 62(20): 7716-7727, 2023 May 22.
Article En | MEDLINE | ID: mdl-37163381

Ruthenium(II) polypyridyl complexes (RPCs) are gaining momentum in photoactivated chemotherapy (PACT), thanks to the possibility of overcoming the classical reliance on molecular oxygen of photodynamic therapy while preserving the selective drug activation by using light. However, notwithstanding the intriguing perspectives, the translation of such an approach in the development of new antimicrobials has been only barely considered. Herein, MTZH-1 and MTZH-2, two novel analogues of metronidazole (MTZ), a mainstay drug in the treatment of anaerobic bacterial infections, were designed and inserted in the strained ruthenium complexes [Ru(tpy)(dmp)(MTZ-1)]PF6 (Ru2) and [Ru(tpy)(dmp)(MTZ-2)]PF6 (Ru3) (tpy = terpyridine, dmp = 2,9-dimethyl-1,10-phenanthroline) (Chart 1). Analogously to the parental compound [Ru(tpy)(dmp)(5NIM)]PF6 (Ru1) (5-nitroimidazolate), the Ru(II)-imidazolate coordination of MTZ derivatives resulted in promising Ru(II) photocages, capable to easily unleash the bioactive ligands upon light irradiation and increase the antibacterial activity against Bacillus subtilis, which was chosen as a model of Gram-positive bacteria. The photoreleased 5-nitroimidazole-based ligands led to remarkable phototoxicities under hypoxic conditions (<1% O2), with the lead compound Ru3 that exhibited the highest potency across the series, being comparable to the one of the clinical drug MTZ. Besides, the chemical architectures of MTZ derivatives made their interaction with NimAunfavorable, being NimA a model of reductases responsible for bacterial resistance against 5-nitroimidazole-based antibiotics, thus hinting at their possible use to combat antimicrobial resistance. This work may therefore provide fundamental knowledge in the design of novel photoresponsive tools to be used in the fight against infectious diseases. For the first time, the effectiveness of the "photorelease antimicrobial therapy" under therapeutically relevant hypoxic conditions was demonstrated.


Anti-Infective Agents , Coordination Complexes , Ruthenium , Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemistry , Metronidazole/pharmacology , Ruthenium/pharmacology , Ruthenium/chemistry , Ligands
5.
Molecules ; 28(5)2023 Feb 21.
Article En | MEDLINE | ID: mdl-36903278

In this study, the ligands 23,24-dihydroxy-3,6,9,12-tetraazatricyclo[17.3.1.1(14,18)]eicosatetra-1(23),14,16,18(24),19,21-hexaene, L1, and 26,27-dihidroxy-3,6,9,12,15-pentaazatricyclo[20.3.1.1(17,21)]eicosaepta-1(26),17,19,21(27),22,24-hexaene, L2, were synthesized: they represent a new class of molecules containing a biphenol unit inserted into a macrocyclic polyamine fragment. The previously synthesized L2 is obtained herein with a more advantageous procedure. The acid-base and Zn(II)-binding properties of L1 and L2 were investigated through potentiometric, UV-Vis, and fluorescence studies, revealing their possible use as chemosensors of H+ and Zn(II). The new peculiar design of L1 and L2 afforded the formation in an aqueous solution of stable Zn(II) mono (LogK 12.14 and 12.98 for L1 and L2, respectively) and dinuclear (LogK 10.16 for L2) complexes, which can be in turn exploited as metallo-receptors for the binding of external guests, such as the popular herbicide glyphosate (N-(phosphonomethyl)glycine, PMG) and its primary metabolite, the aminomethylphosphonic acid (AMPA). Potentiometric studies revealed that PMG forms more stable complexes than AMPA with both L1- and L2-Zn(II) complexes, moreover PMG showed higher affinity for L2 than for L1. Fluorescence studies showed instead that the L1-Zn(II) complex could signal the presence of AMPA through a partial quenching of the fluorescence emission. These studies unveiled therefore the utility of polyamino-phenolic ligands in the design of promising metallo-receptors for elusive environmental targets.

6.
Langmuir ; 39(1): 679-689, 2023 01 10.
Article En | MEDLINE | ID: mdl-36574357

A water-soluble ruthenium(II) complex (L), capable of producing singlet oxygen (1O2) when irradiated with visible light, was used to modify the surface of an indium-tin oxide (ITO) electrode decorated with a nanostructured layer of TiO2 (TiO2/ITO). Singlet oxygen triggers the appearance of a cathodic photocurrent when the electrode is illuminated and biased at a proper reduction potential value. The L/TiO2/ITO electrode was first characterized with cyclic voltammetry, impedance spectroscopy, NMR, and Raman spectroscopy. The rate constant of singlet oxygen production was evaluated by spectrophotometric measurements. Taking advantage of the oxidative process initiated by 1O2, the analysis of phenolic compounds was accomplished. Particularly, the 1O2-driven oxidation of hydroquinone (HQ) produced quinone moieties, which could be reduced back at the electrode surface, biased at -0.3 V vs Ag/AgCl. Such a light-actuated redox cycle produced a photocurrent dependent on the concentration of HQ in solution, exhibiting a limit of detection (LOD) of 0.3 µmol dm-3. The L/TiO2/ITO platform was also evaluated for the analysis of p-aminophenol, a commonly used reagent in affinity sensing based on alkaline phosphatase.


Ruthenium , Singlet Oxygen , Light , Oxidation-Reduction , Electrodes
7.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article En | MEDLINE | ID: mdl-36362089

Ovarian cancer recurrence is frequent and associated with chemoresistance, leading to extremely poor prognosis. Herein, we explored the potential anti-cancer effect of a series of highly charged Ru(II)-polypyridyl complexes as photosensitizers in photodynamic therapy (PDT), which were able to efficiently sensitize the formation of singlet oxygen upon irradiation (Ru12+ and Ru22+) and to produce reactive oxygen species (ROS) in their corresponding dinuclear metal complexes with the Fenton active Cu(II) ion/s ([CuRu1]4+ and [Cu2Ru2]6+). Their cytotoxic and anti-tumor effects were evaluated on human ovarian cancer A2780 cells both in the absence or presence of photoirradiation, respectively. All the compounds tested were well tolerated under dark conditions, whereas they switched to exert anti-tumor activity following photoirradiation. The specific effect was mediated by the onset of programed cell death, but only in the case of Ru12+ and Ru22+ was preceded by the loss of mitochondrial membrane potential soon after photoactivation and ROS production, thus supporting the occurrence of apoptosis via type II photochemical reactions. Thus, Ru(II)-polypyridyl-based photosensitizers represent challenging tools to be further investigated in the identification of new therapeutic approaches to overcome the innate chemoresistance to platinum derivatives of some ovarian epithelial cancers and to find innovative drugs for recurrent ovarian cancer.


Antineoplastic Agents , Coordination Complexes , Ovarian Neoplasms , Photochemotherapy , Ruthenium , Humans , Female , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Carcinoma, Ovarian Epithelial/drug therapy , Cell Line, Tumor , Reactive Oxygen Species , HeLa Cells , Ovarian Neoplasms/drug therapy , Neoplasm Recurrence, Local , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
8.
Inorg Chem ; 61(18): 6689-6694, 2022 May 09.
Article En | MEDLINE | ID: mdl-34793162

5-Nitroimidazole (5NIMH), chosen as a molecular model of nitroimidazole derivatives, which represent a broad-spectrum class of antimicrobials, was incorporated into the ruthenium complexes [Ru(tpy)(phen)(5NIM)]PF6 (1) and [Ru(tpy)(dmp)(5NIM)]PF6 (2) (tpy = terpyridine, phen = phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline). Besides the uncommon metal coordination of 5-nitroimidazole in its imidazolate form (5NIM), the different architectures of the spectator ligands (phen and dmp) were exploited to tune the "mode of action" of the resulting complexes, passing from a photostable compound where the redox properties of 5NIMH are preserved (1) to one suitable for the nitroimidazole phototriggered release (2) and whose antibacterial activity against B. subtilis, chosen as cellular model, is effectively improved upon light exposure. This study may provide a fundamental knowledge on the use of Ru(II)-polypyridyl complexes to incorporate and/or photorelease biologically relevant nitroimidazole derivatives in the design of a novel class of antimicrobials.


Coordination Complexes , Nitroimidazoles , Ruthenium , Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Ligands , Nitroimidazoles/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology
9.
J Inorg Biochem ; 220: 111467, 2021 07.
Article En | MEDLINE | ID: mdl-33932708

The antimicrobial potential of two ruthenium(II) polypyridyl complexes, [Ru(phen)2L1]2+ and [Ru(phen)2L2]2+ (phen = 1,10-phenanthroline) containing the 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridilophane (L1) and the 4,4'-bis-[methylen-(1,4,7,10-tetraazacyclododecane)]-2,2' bipyridine (L2) units, is herein investigated. These peculiar polyamine frameworks afford the formation of highly charged species in solution, influence the DNA-binding and cleavage properties of compounds, but they do not undermine their singlet oxygen sensitizing capacities, thus making these complexes attractive 1O2 generators in aqueous solution. L1 and L2 also permit to stably host Fenton -active Cu2+ ion/s, leading to the formation of mixed Ru2+/Cu2+ forms capable to further strengthen the oxidative damages to biological targets. Herein, following a characterization of the Cu2+ binding ability by [Ru(phen)2L2]2+, the water-octanol distribution coefficients, the DNA binding, cleavage and 1O2 sensitizing properties of [Ru(phen)2L2]2+ and [Cu2Ru(phen)2L2]6+ were analysed and compared with those of [Ru(phen)2L1]2+ and [CuRu(phen)2L1]4+. The antimicrobial activity of all compounds was evaluated against B. subtilis, chosen as a model for gram-positive bacteria, both under dark and upon light-activation. Our results unveil a notable phototoxicity of [Ru(phen)2L2]2+ and [Cu2Ru(phen)2L2]6+, with MIC (minimal inhibitory concentrations) values of 3.12 µM. This study highlights that the structural characteristics of polyamine ligands gathered on highly charged Ru(II)-polypyridyl complexes are versatile tools that can be exploited to achieve enhanced antibacterial strategies.


Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Pyridines/pharmacology , Animals , Anti-Bacterial Agents/radiation effects , Bacillus subtilis/drug effects , Cattle , Coordination Complexes/radiation effects , Copper/chemistry , Copper/radiation effects , DNA/drug effects , DNA Cleavage/drug effects , Ligands , Microbial Sensitivity Tests , Pyridines/radiation effects , Ruthenium/chemistry , Ruthenium/radiation effects , Singlet Oxygen/metabolism
10.
Chempluschem ; 85(4): 659-671, 2020 04.
Article En | MEDLINE | ID: mdl-32237220

The synthesis and characterization of the two new open-chain ligands 1,15-bis-[6-(2,2'-bipyridyl)]-2,5,8,11,14-pentaaza-octadecane (L1) and 1,15-bis-[2-(1,10-phenanthroline)-9-methyl]-2,5,8,11,14-pentaazaoctadecane (L2), both featuring a tetraethylenpentaamine chain linking via methylene bridges the 6 and 2 positions of two identical 2,2'-bipyridyl (bpy) and 9-methyl-1,10-phenanthroline (9-methyl-phen) moieties respectively, are reported. Their protonation and binding ability for Cu2+ , Zn2+ , Cd2+ and Pb2+ have been studied by coupling potentiometric titrations with UV-vis absorption and fluorescence emission measurements in water. L1 and L2 afford stable mono- and dinuclear complexes, in which the metal ion is bound by a single bpy or 9-methyl-phen unit and the amine groups on the aliphatic chain. However, L1 displays a greater binding ability for Cu2+ and Zn2+ with respect to L2, the stability constants of the [ML1]2+ complexes being 21.8 (Cu2+ ) and 19.4 (Zn2+ ) log units vs 20.34 and 16.8 log. units for the corresponding L2 species. Among all the metal ions tested, only the Zn2+ complex with L2 features an enhanced fluorescence emission at neutral pH, thanks to the simultaneous binding of one Zn2+ ion and H+ ion(s), that inhibits any possible photoinduced electron transfer (PET) process from the amine donors to the excited phen moiety. Binding of a second metal switches off the emission again.

11.
Molecules ; 25(4)2020 Feb 20.
Article En | MEDLINE | ID: mdl-32093219

Two maltol-based ligands, N,N'-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N',N'-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were designed to evaluate how biological and binding features are affected by structural modifications of the parent compound malten. The acid-base behavior and the binding properties towards transition, alkaline-earth (AE) and rare-earth (RE) cations in aqueous solution, studied by potentiometric, UV-Vis and NMR analysis, are reported along with biological studies on DNA and leukemia cells. Both ligands form stable complexes with Cu(II), Zn(II) and Co(II) that were studied as metallo-receptors for AE and RE at neutral pH. L1 complexes are more affected than L2 ones by hard cations, the L1-Cu(II) system being deeply affected by RE. The structural modifications altered the mechanism of action: L1 partially maintains the ability to induce structural alterations of DNA, while L2 provokes single strand (nicks) and to a lesser extent double strand breaks of DNA.


Antineoplastic Agents , Coordination Complexes , Pyrones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Humans , Ligands , Molecular Structure , U937 Cells , Zinc/chemistry , Zinc/pharmacology
12.
Sci Rep ; 9(1): 10320, 2019 07 16.
Article En | MEDLINE | ID: mdl-31311943

Oxidative stress due to excess superoxide anion ([Formula: see text]) produced by dysfunctional mitochondria is a key pathogenic event of aging and ischemia-reperfusion diseases. Here, a new [Formula: see text]-scavenging MnII complex with a new polyamino-polycarboxylate macrocycle (4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate) containing 2 quinoline units (MnQ2), designed to improve complex stability and cell permeability, was compared to parental MnII complex with methyls replacing quinolines (MnM2). MnQ2 was more stable than MnM2 (log K = 19.56(8) vs. 14.73(2) for the equilibrium Mn2+ + L2-, where L = Q2 and M2) due to the involvement of quinoline in metal binding and to the hydrophobic features of the ligand which improve metal desolvation upon complexation. As oxidative stress model, H9c2 rat cardiomyoblasts were subjected to hypoxia-reoxygenation. MnQ2 and MnM2 (10 µmol L-1) were added at reoxygenation for 1 or 2 h. The more lipophilic MnQ2 showed more rapid cell and mitochondrial penetration than MnM2. Both MnQ2 and MnM2 abated endogenous ROS and mitochondrial [Formula: see text], decreased cell lipid peroxidation, reduced mitochondrial dysfunction, in terms of efficiency of the respiratory chain and preservation of membrane potential (Δψ) and permeability, decreased the activation of pro-apoptotic caspases 9 and 3, and increased cell viability. Of note, MnQ2 was more effective than MnM2 to exert cytoprotective anti-oxidant effects in the short term. Compounds with redox-inert ZnII replacing the functional MnII were ineffective. This study provides clues which further our understanding of the structure-activity relationships of MnII-chelates and suggests that MnII-polyamino-polycarboxylate macrocycles could be developed as new anti-oxidant drugs.


Antioxidants/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Manganese/chemistry , Myocytes, Cardiac/cytology , Superoxides/analysis , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Hypoxia , Cell Line , Lipid Peroxidation/drug effects , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Rats
13.
Chemistry ; 25(45): 10606-10615, 2019 Aug 09.
Article En | MEDLINE | ID: mdl-31107567

A comparative study between two novel, highly water soluble, ruthenium(II) polypyridyl complexes, [Ru(phen)2 L'] and [Ru(phen)2 Cu(II)L'] (L and L-CuII ), containing the polyaazamacrocyclic unit 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridilophane (L'), is herein reported. L and L-CuII interact with calf-thymus DNA and efficiently cleave DNA plasmid when light-activated. They also possess great penetration abilities and photo-induced biological activities, evaluated on an A375 human melanoma cell line, with L-CuII being the most effective. Our study highlights the key role of the Fenton active CuII center within the macrocycle framework, that would play a synergistic role with light activation in the formation of cytotoxic ROS species. Based on these results, an optimal design of RuII polypyridyl systems featuring specific CuII -chelating polyamine units could represent a suitable strategy for the development of novel and effective photosensitizers in photodynamic therapy.


Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/pharmacology , DNA/chemistry , DNA Cleavage/drug effects , Humans , Microscopy, Confocal , Photosensitizing Agents/pharmacology , Pyridines/chemistry , Singlet Oxygen/metabolism
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 248-253, 2018 Jun 15.
Article En | MEDLINE | ID: mdl-29626815

Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.


Breast/diagnostic imaging , Contrast Media , Magnetite Nanoparticles/chemistry , Optical Imaging/methods , Phantoms, Imaging , Photoacoustic Techniques/methods , Spectroscopy, Near-Infrared/methods , Animals , Chickens , Female
15.
J Mater Chem B ; 5(15): 2788-2797, 2017 Apr 21.
Article En | MEDLINE | ID: mdl-32264165

Methylene blue (MB) can be employed as a photo-activatable antimicrobial drug in photodynamic therapy (PDT) due to its ability to release oxygen free radicals upon photo-activation. However, its poor ability to penetrate bacterial cell walls and bacterial biofilms limits its antimicrobial activity. To overcome these limitations, we propose some formulations of MB based on different cationic liposomes. The liposome-MB systems were characterized using dynamic light scattering (DLS), zeta potential analysis and UV-visible spectroscopy. Their ability to penetrate inside the cytoplasm of E. coli, taken as a bacterial model for Gram-negative strains, was investigated through laser scanning confocal microscopy (CLSM) and compared to the penetration of naked MB. Then, MB-loaded liposomes were photo-activated and their antimicrobial activity was tested against E. coli, showing a strong improvement with respect to MB solutions. The liposomal formulations dramatically enhance MB penetration in bacterial biofilms and reduce the inflammatory response due to lipopolysaccharide exposure in mammalian cells. The observed antimicrobial and anti-inflammatory efficacies show a clear correlation with some structural features of the carriers, namely the size and the surface charge density. Overall, these results provide fundamental knowledge that enables the design of novel efficient PDT treatments, which potentially overcome the rising incidence of antibiotic resistance of bacterial strains.

16.
Chemistry ; 22(42): 14890-14901, 2016 Oct 10.
Article En | MEDLINE | ID: mdl-27573342

The synthesis of a new ligand (L1) containing two 1,4,7-triazacyclononane ([9]aneN3 ) moieties linked by a 4,5-dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+ , Zn2+ , Cd2+ , and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6''-dimethylen-2,2':6',2''-terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.

17.
Org Biomol Chem ; 14(35): 8309-21, 2016 Sep 21.
Article En | MEDLINE | ID: mdl-27530722

A giant-size polyamine macrocycle L, composed of four 1,4,8,11-tetraazacyclotetradecane (cyclam) units linked by 1,3-dimethylenbenzyl spacers, strongly interacts in aqueous solution with four pH indicators (bromocresol purple (H2BCP), phenol red (H2PR), phenolphthalein (H2PP) and fluorescein (H2F)) in their anionic forms. Besides 1 : 1 complexes, L also forms assemblies with an unusual 1 : 2 receptor to dye stoichiometry, thanks to its large dimensions, which allow for the simultaneous interaction of the receptor protonated forms with two anionic dyes. The formation of the assemblies markedly affects the pKa values of the phenol groups of the dyes, which change colour upon complexation in well-defined pH ranges. This property can be effectively exploited for optical detection of anions. The L-H2BCP 1 : 2 assembly is able to selectively detect the triphosphate anion at slightly acidic pH values, thanks to the release, upon triphosphate coordination, of the dye from the ensemble, with a consequent colour change of the solution from purple-violet (complexed BCP(2-) dye) to yellow (free BCP(2-)). No effect is caused by other inorganic anions. The L-H2BCP 1 : 2 assembly represents a rare case of an optical chemosensor for the triphosphate anion.

18.
Free Radic Biol Med ; 93: 67-76, 2016 Apr.
Article En | MEDLINE | ID: mdl-26828020

BACKGROUND: One of the most discomfortable dose-limiting adverse reactions of effective drugs for the treatment of solid tumors is a peripheral neuropathy which is the main reason for dose reduction and discontinuation of the therapy. We identified oxidative stress as one target of oxaliplatin toxicity in the search of possible adjuvant therapies to prevent neuropathy and alleviate pain. Therefore, we studied an effective SOD mimetic compound, MnL4, as a possible adjuvant treatment in in vitro cellular cultures and in vivo on a rat model of oxaliplatin-induced neuropathy. METHODS AND RESULTS: All rat manipulations were carried out according to the European Community guidelines for animal care. We performed experiments on SH-SY5Y, HT-29 and primary cortical rat astrocytes. Incubation with 100 µM oxaliplatin increased superoxide anion production and caspase 3/7 activity in the neuronal cell line SH-SY5Y and cortical astrocytes. MnL4 (10 µM) significantly reduced the increase in superoxide anion in both cell types, but prevented caspase 3/7 activity only in astrocytes. MnL4 reduced lipid peroxidation induced by oxaliplatin and normalized the intracellular calcium signal evoked by ATP and acetylcholine in astrocytes, preincubated with oxaliplatin. MnL4 did not interfere with the concentration- and time-dependent cytotoxic effects of oxaliplatin on the cancer cell lines HT-29 and LoVo. In vivo MnL4 reduced the response at mechanical noxious and mechanical and thermal non-noxious stimuli in oxaliplatin treated animals. Rat rota-rod performances were improved. CONCLUSION: Since MnL4 exerts its beneficial effects without interfering with the anticancer activity of oxaliplatin, it could be proposed as adjuvant to prevent and reduce oxaliplatin induced neuropathy.


Drug-Related Side Effects and Adverse Reactions/drug therapy , Manganese Compounds/administration & dosage , Neuralgia/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/administration & dosage , Astrocytes/drug effects , Astrocytes/pathology , Biomimetics , Calcium Signaling/drug effects , Drug-Related Side Effects and Adverse Reactions/pathology , HT29 Cells , Humans , Lipid Peroxidation/drug effects , Male , Neoplasms/drug therapy , Neoplasms/pathology , Neuralgia/chemically induced , Neuralgia/pathology , Neurons/drug effects , Organoplatinum Compounds/adverse effects , Oxaliplatin , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Rats
19.
J Pharm Biomed Anal ; 106: 197-203, 2015 Mar 15.
Article En | MEDLINE | ID: mdl-25483173

This study was carried out to evaluate whether high-frequency ultrasounds, a commonly used aesthetic medicine treatment for skin rejuvenation, may enhance the penetration of the Mn-containing compound Mn(II)(Me2DO2A) (manganese(II) 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate) biologically active as a superoxide anion scavenger, in the cutaneous layers of ex vivo human skin explants. Although its antioxidant properties are well known and the compound is basically not toxic in animal models, its trans-cutaneous permeation and its toxicological profile at a systemic level have not yet fully analyzed. Therefore, its possible penetration in the deep cutaneous layers was also evaluated. To this purpose, Mn(II)(Me2DO2A) was formulated as emulsion-gel, lipogel and hydrogel. These different formulations were also tested in combination with high-frequency ultrasounds (10-3500 Hz frequency modulation on a 5 MHz main frequency) used as physical permeation enhancers, delivered by a MedVisage™ device (General Project, Montespertoli, Italy) currently used for aesthetic medicine purposes. The permeation of the Mn-containing compound from the formulations was evaluated by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements of Mn in horizontal cryosections of the skin samples cut at different depths to separate the epidermis, papillary and reticular dermis, as well as by vertical Franz diffusion cells. The results show that the hydrogel formulation yielded the highest transepidermal delivery of Mn(II)(Me2DO2A) and that the application of ultrasounds (3 W, FM 100 Hz, 2×10 s) significantly enhanced its penetration into the epidermis and upper dermal layers. Of note, nearly undetectable amounts of Mn(II)(Me2DO2A) were detected in the reticular dermis and the Franz cell fluid. Although an in vivo confirmation of these results will be necessary, this method may allow to minimize undesired drug passage to the bloodstream and undesired delivery to non-target internal organs and avoiding its renal excretion and release into the environment.


Antioxidants/pharmacokinetics , Organometallic Compounds/pharmacokinetics , Skin Absorption , Ultrasonics/methods , Administration, Cutaneous , Antioxidants/administration & dosage , Chemistry, Pharmaceutical/methods , Emulsions , Gels , Humans , Hydrogels , Organometallic Compounds/administration & dosage , Spectrophotometry, Atomic
20.
Mediators Inflamm ; 2013: 905360, 2013.
Article En | MEDLINE | ID: mdl-23861563

Superoxide anion (O(2) (•-)) is overproduced in joint inflammation, rheumatoid arthritis, and osteoarthritis. Increased O(2) (•-) production leads to tissue damage, articular degeneration, and pain. In these conditions, the physiological defense against O(2) (•-), superoxide dismutases (SOD) are decreased. The Mn(II) complex MnL4 is a potent SOD mimetic, and in this study it was tested in inflammatory and osteoarticular rat pain models. In vivo protocols were approved by the animal Ethical Committee of the University of Florence. Pain was measured by paw pressure and hind limb weight bearing alterations tests. MnL4 (15 mg kg(-1)) acutely administered, significantly reduced pain induced by carrageenan, complete Freund's adjuvant (CFA), and sodium monoiodoacetate (MIA). In CFA and MIA protocols, it ameliorated the alteration of postural equilibrium. When administered by osmotic pump in the MIA osteoarthritis, MnL4 reduced pain, articular derangement, plasma TNF alpha levels, and protein carbonylation. The scaffold ring was ineffective. MnL4 (10(-7) M) prevented the lipid peroxidation of isolated human chondrocytes when O(2) (•-) was produced by RAW 264.7. MnL4 behaves as a potent pain reliever in acute inflammatory and chronic articular pain, being its efficacy related to antioxidant property. Therefore MnL4 appears as a novel protective compound potentially suitable for the treatment of joint diseases.


Organometallic Compounds/pharmacology , Pain Measurement/methods , Pain/drug therapy , Superoxide Dismutase/chemistry , Acetates , Animals , Antioxidants/pharmacology , Carrageenan , Cell Line , Chondrocytes/cytology , Freund's Adjuvant , Humans , Inflammation , Lipid Peroxidation , Male , Mice , Osteoarthritis/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/blood
...